Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfae Structured version   Visualization version   GIF version

Theorem brfae 31507
Description: 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
brfae.0 dom 𝑅 = 𝐷
brfae.1 (𝜑𝑅 ∈ V)
brfae.2 (𝜑𝑀 ran measures)
brfae.3 (𝜑𝐹 ∈ (𝐷m dom 𝑀))
brfae.4 (𝜑𝐺 ∈ (𝐷m dom 𝑀))
Assertion
Ref Expression
brfae (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑀   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)

Proof of Theorem brfae
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfae.3 . . 3 (𝜑𝐹 ∈ (𝐷m dom 𝑀))
2 brfae.4 . . 3 (𝜑𝐺 ∈ (𝐷m dom 𝑀))
3 simpl 485 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
43eleq1d 2897 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ∈ (dom 𝑅m dom 𝑀) ↔ 𝐹 ∈ (dom 𝑅m dom 𝑀)))
5 simpr 487 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
65eleq1d 2897 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 ∈ (dom 𝑅m dom 𝑀) ↔ 𝐺 ∈ (dom 𝑅m dom 𝑀)))
74, 6anbi12d 632 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ↔ (𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀))))
83fveq1d 6672 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
95fveq1d 6672 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔𝑥) = (𝐺𝑥))
108, 9breq12d 5079 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝐹𝑥)𝑅(𝐺𝑥)))
1110rabbidv 3480 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)} = {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)})
1211breq1d 5076 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ({𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
137, 12anbi12d 632 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀) ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
14 eqid 2821 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}
1513, 14brabga 5421 . . 3 ((𝐹 ∈ (𝐷m dom 𝑀) ∧ 𝐺 ∈ (𝐷m dom 𝑀)) → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
161, 2, 15syl2anc 586 . 2 (𝜑 → (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
17 brfae.1 . . . 4 (𝜑𝑅 ∈ V)
18 brfae.2 . . . 4 (𝜑𝑀 ran measures)
19 faeval 31505 . . . 4 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2017, 18, 19syl2anc 586 . . 3 (𝜑 → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
2120breqd 5077 . 2 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}𝐺))
22 brfae.0 . . . . . 6 dom 𝑅 = 𝐷
2322oveq1i 7166 . . . . 5 (dom 𝑅m dom 𝑀) = (𝐷m dom 𝑀)
241, 23eleqtrrdi 2924 . . . 4 (𝜑𝐹 ∈ (dom 𝑅m dom 𝑀))
252, 23eleqtrrdi 2924 . . . 4 (𝜑𝐺 ∈ (dom 𝑅m dom 𝑀))
2624, 25jca 514 . . 3 (𝜑 → (𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)))
2726biantrurd 535 . 2 (𝜑 → ({𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀 ↔ ((𝐹 ∈ (dom 𝑅m dom 𝑀) ∧ 𝐺 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀)))
2816, 21, 273bitr4d 313 1 (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494   cuni 4838   class class class wbr 5066  {copab 5128  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  m cmap 8406  measurescmeas 31454  a.e.cae 31496  ~ a.e.cfae 31497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-fae 31504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator