MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth Structured version   Visualization version   GIF version

Theorem canth 7110
Description: No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e. no function can map 𝐴 it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 8669. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7111 for a counterexample. (Use nex 1797 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypothesis
Ref Expression
canth.1 𝐴 ∈ V
Assertion
Ref Expression
canth ¬ 𝐹:𝐴onto→𝒫 𝐴

Proof of Theorem canth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 canth.1 . . . 4 𝐴 ∈ V
2 ssrab2 4055 . . . 4 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ⊆ 𝐴
31, 2elpwi2 5248 . . 3 {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ 𝒫 𝐴
4 forn 6592 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ran 𝐹 = 𝒫 𝐴)
53, 4eleqtrrid 2920 . 2 (𝐹:𝐴onto→𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
6 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
7 fveq2 6669 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eleq12d 2907 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (𝐹𝑥) ↔ 𝑦 ∈ (𝐹𝑦)))
98notbid 320 . . . . . . . 8 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝐹𝑥) ↔ ¬ 𝑦 ∈ (𝐹𝑦)))
109elrab 3679 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ (𝐹𝑦)))
1110baibr 539 . . . . . 6 (𝑦𝐴 → (¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
12 nbbn 387 . . . . . 6 ((¬ 𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}) ↔ ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1311, 12sylib 220 . . . . 5 (𝑦𝐴 → ¬ (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
14 eleq2 2901 . . . . 5 ((𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} → (𝑦 ∈ (𝐹𝑦) ↔ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1513, 14nsyl 142 . . . 4 (𝑦𝐴 → ¬ (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)})
1615nrex 3269 . . 3 ¬ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}
17 fofn 6591 . . . 4 (𝐹:𝐴onto→𝒫 𝐴𝐹 Fn 𝐴)
18 fvelrnb 6725 . . . 4 (𝐹 Fn 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
1917, 18syl 17 . . 3 (𝐹:𝐴onto→𝒫 𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)}))
2016, 19mtbiri 329 . 2 (𝐹:𝐴onto→𝒫 𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥 ∈ (𝐹𝑥)} ∈ ran 𝐹)
215, 20pm2.65i 196 1 ¬ 𝐹:𝐴onto→𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  𝒫 cpw 4538  ran crn 5555   Fn wfn 6349  ontowfo 6352  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fo 6360  df-fv 6362
This theorem is referenced by:  canth2  8669  canthwdom  9042
  Copyright terms: Public domain W3C validator