| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2 | Structured version Visualization version GIF version | ||
| Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of [Suppes] p. 97. For the function version, see canth 7341. This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| canth2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| canth2 | ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | pwex 5335 | . . 3 ⊢ 𝒫 𝐴 ∈ V |
| 3 | snelpwi 5403 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 4 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 5 | 4 | sneqr 4804 | . . . . . 6 ⊢ ({𝑥} = {𝑦} → 𝑥 = 𝑦) |
| 6 | sneq 4599 | . . . . . 6 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
| 7 | 5, 6 | impbii 209 | . . . . 5 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
| 9 | 3, 8 | dom3 8967 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝒫 𝐴 ∈ V) → 𝐴 ≼ 𝒫 𝐴) |
| 10 | 1, 2, 9 | mp2an 692 | . 2 ⊢ 𝐴 ≼ 𝒫 𝐴 |
| 11 | 1 | canth 7341 | . . . . 5 ⊢ ¬ 𝑓:𝐴–onto→𝒫 𝐴 |
| 12 | f1ofo 6807 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝒫 𝐴 → 𝑓:𝐴–onto→𝒫 𝐴) | |
| 13 | 11, 12 | mto 197 | . . . 4 ⊢ ¬ 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 14 | 13 | nex 1800 | . . 3 ⊢ ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴 |
| 15 | bren 8928 | . . 3 ⊢ (𝐴 ≈ 𝒫 𝐴 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝒫 𝐴) | |
| 16 | 14, 15 | mtbir 323 | . 2 ⊢ ¬ 𝐴 ≈ 𝒫 𝐴 |
| 17 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ 𝒫 𝐴 ↔ (𝐴 ≼ 𝒫 𝐴 ∧ ¬ 𝐴 ≈ 𝒫 𝐴)) | |
| 18 | 10, 16, 17 | mpbir2an 711 | 1 ⊢ 𝐴 ≺ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 –onto→wfo 6509 –1-1-onto→wf1o 6510 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: canth2g 9095 r1sdom 9727 alephsucpw2 10064 dfac13 10096 pwsdompw 10156 numthcor 10447 alephexp1 10532 pwcfsdom 10536 cfpwsdom 10537 gchac 10634 inawinalem 10642 tskcard 10734 gruina 10771 grothac 10783 rpnnen 16195 rexpen 16196 rucALT 16198 rectbntr0 24721 |
| Copyright terms: Public domain | W3C validator |