MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpox Structured version   Visualization version   GIF version

Theorem cbvmpox 7247
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7248 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpox.1 𝑧𝐵
cbvmpox.2 𝑥𝐷
cbvmpox.3 𝑧𝐶
cbvmpox.4 𝑤𝐶
cbvmpox.5 𝑥𝐸
cbvmpox.6 𝑦𝐸
cbvmpox.7 (𝑥 = 𝑧𝐵 = 𝐷)
cbvmpox.8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵   𝑦,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑧 𝑥𝐴
2 cbvmpox.1 . . . . . 6 𝑧𝐵
32nfcri 2971 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1900 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpox.3 . . . . 5 𝑧𝐶
65nfeq2 2995 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1900 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1915 . . . . 5 𝑤 𝑥𝐴
9 nfcv 2977 . . . . . 6 𝑤𝐵
109nfcri 2971 . . . . 5 𝑤 𝑦𝐵
118, 10nfan 1900 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
12 cbvmpox.4 . . . . 5 𝑤𝐶
1312nfeq2 2995 . . . 4 𝑤 𝑢 = 𝐶
1411, 13nfan 1900 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
15 nfv 1915 . . . . 5 𝑥 𝑧𝐴
16 cbvmpox.2 . . . . . 6 𝑥𝐷
1716nfcri 2971 . . . . 5 𝑥 𝑤𝐷
1815, 17nfan 1900 . . . 4 𝑥(𝑧𝐴𝑤𝐷)
19 cbvmpox.5 . . . . 5 𝑥𝐸
2019nfeq2 2995 . . . 4 𝑥 𝑢 = 𝐸
2118, 20nfan 1900 . . 3 𝑥((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
22 nfv 1915 . . . 4 𝑦(𝑧𝐴𝑤𝐷)
23 cbvmpox.6 . . . . 5 𝑦𝐸
2423nfeq2 2995 . . . 4 𝑦 𝑢 = 𝐸
2522, 24nfan 1900 . . 3 𝑦((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
26 eleq1w 2895 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 483 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 cbvmpox.7 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐷)
2928eleq2d 2898 . . . . . 6 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝐷))
30 eleq1w 2895 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐷𝑤𝐷))
3129, 30sylan9bb 512 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐷))
3227, 31anbi12d 632 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐷)))
33 cbvmpox.8 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
3433eqeq2d 2832 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑢 = 𝐶𝑢 = 𝐸))
3532, 34anbi12d 632 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)))
367, 14, 21, 25, 35cbvoprab12 7243 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
37 df-mpo 7161 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
38 df-mpo 7161 . 2 (𝑧𝐴, 𝑤𝐷𝐸) = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
3936, 37, 383eqtr4i 2854 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnfc 2961  {coprab 7157  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5129  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  cbvmpo  7248  mpomptsx  7762  dmmpossx  7764  gsumcom2  19095  ptcmpg  22665
  Copyright terms: Public domain W3C validator