Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpox2 Structured version   Visualization version   GIF version

Theorem cbvmpox2 44433
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7248 allows 𝐴 to be a function of 𝑦, analogous to cbvmpox 7247. (Contributed by AV, 30-Mar-2019.)
Hypotheses
Ref Expression
cbvmpox2.1 𝑧𝐴
cbvmpox2.2 𝑦𝐷
cbvmpox2.3 𝑧𝐶
cbvmpox2.4 𝑤𝐶
cbvmpox2.5 𝑥𝐸
cbvmpox2.6 𝑦𝐸
cbvmpox2.7 (𝑦 = 𝑧𝐴 = 𝐷)
cbvmpox2.8 ((𝑦 = 𝑧𝑥 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤𝐷, 𝑧𝐵𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑤 𝑥𝐴
2 nfv 1915 . . . . 5 𝑤 𝑦𝐵
31, 2nfan 1900 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
4 cbvmpox2.4 . . . . 5 𝑤𝐶
54nfeq2 2995 . . . 4 𝑤 𝑢 = 𝐶
63, 5nfan 1900 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
7 cbvmpox2.1 . . . . . 6 𝑧𝐴
87nfcri 2971 . . . . 5 𝑧 𝑥𝐴
9 nfv 1915 . . . . 5 𝑧 𝑦𝐵
108, 9nfan 1900 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
11 cbvmpox2.3 . . . . 5 𝑧𝐶
1211nfeq2 2995 . . . 4 𝑧 𝑢 = 𝐶
1310, 12nfan 1900 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
14 nfv 1915 . . . . 5 𝑥 𝑤𝐷
15 nfv 1915 . . . . 5 𝑥 𝑧𝐵
1614, 15nfan 1900 . . . 4 𝑥(𝑤𝐷𝑧𝐵)
17 cbvmpox2.5 . . . . 5 𝑥𝐸
1817nfeq2 2995 . . . 4 𝑥 𝑢 = 𝐸
1916, 18nfan 1900 . . 3 𝑥((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)
20 cbvmpox2.2 . . . . . 6 𝑦𝐷
2120nfcri 2971 . . . . 5 𝑦 𝑤𝐷
22 nfv 1915 . . . . 5 𝑦 𝑧𝐵
2321, 22nfan 1900 . . . 4 𝑦(𝑤𝐷𝑧𝐵)
24 cbvmpox2.6 . . . . 5 𝑦𝐸
2524nfeq2 2995 . . . 4 𝑦 𝑢 = 𝐸
2623, 25nfan 1900 . . 3 𝑦((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)
27 eleq1w 2895 . . . . . 6 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
28 cbvmpox2.7 . . . . . . 7 (𝑦 = 𝑧𝐴 = 𝐷)
2928eleq2d 2898 . . . . . 6 (𝑦 = 𝑧 → (𝑤𝐴𝑤𝐷))
3027, 29sylan9bb 512 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝐴𝑤𝐷))
31 simpr 487 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑧) → 𝑦 = 𝑧)
3231eleq1d 2897 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑦𝐵𝑧𝐵))
3330, 32anbi12d 632 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑧) → ((𝑥𝐴𝑦𝐵) ↔ (𝑤𝐷𝑧𝐵)))
34 cbvmpox2.8 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → 𝐶 = 𝐸)
3534ancoms 461 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → 𝐶 = 𝐸)
3635eqeq2d 2832 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑢 = 𝐶𝑢 = 𝐸))
3733, 36anbi12d 632 . . 3 ((𝑥 = 𝑤𝑦 = 𝑧) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)))
386, 13, 19, 26, 37cbvoprab12 7243 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑤, 𝑧⟩, 𝑢⟩ ∣ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)}
39 df-mpo 7161 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
40 df-mpo 7161 . 2 (𝑤𝐷, 𝑧𝐵𝐸) = {⟨⟨𝑤, 𝑧⟩, 𝑢⟩ ∣ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)}
4138, 39, 403eqtr4i 2854 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤𝐷, 𝑧𝐵𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wnfc 2961  {coprab 7157  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5129  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  dmmpossx2  44434
  Copyright terms: Public domain W3C validator