![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clmgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mgmcl 17466 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clmgmOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
clmgmOLD | ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmgmOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
2 | 1 | ismgmOLD 33980 | . . . 4 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
3 | fovrn 6970 | . . . . 5 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
4 | 3 | 3exp 1113 | . . . 4 ⊢ (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
5 | 2, 4 | syl6bi 243 | . . 3 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
7 | 6 | 3imp 1102 | 1 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 × cxp 5264 dom cdm 5266 ⟶wf 6045 (class class class)co 6814 Magmacmagm 33978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-mgmOLD 33979 |
This theorem is referenced by: exidcl 34006 |
Copyright terms: Public domain | W3C validator |