![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmscmet | Structured version Visualization version GIF version |
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
cmscmet | ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
2 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
3 | 1, 2 | iscms 23342 | . 2 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
4 | 3 | simprbi 483 | 1 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 × cxp 5264 ↾ cres 5268 ‘cfv 6049 Basecbs 16059 distcds 16152 MetSpcmt 22324 CMetcms 23252 CMetSpccms 23329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-res 5278 df-iota 6012 df-fv 6057 df-cms 23332 |
This theorem is referenced by: bncmet 23344 cmsss 23347 cmetcusp1 23349 minveclem3a 23398 |
Copyright terms: Public domain | W3C validator |