![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mvalel | Structured version Visualization version GIF version |
Description: A (matrix) element of the result of an inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mvalel | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | cpm2mfval.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
3 | 1, 2 | cpm2mval 20757 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
4 | 3 | adantr 472 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝐼‘𝑀) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑀𝑦))‘0))) |
5 | oveq12 6822 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝑀𝑦) = (𝑋𝑀𝑌)) | |
6 | 5 | fveq2d 6356 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑋𝑀𝑌))) |
7 | 6 | fveq1d 6354 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
8 | 7 | adantl 473 | . 2 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
9 | simprl 811 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑋 ∈ 𝑁) | |
10 | simprr 813 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → 𝑌 ∈ 𝑁) | |
11 | fvexd 6364 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → ((coe1‘(𝑋𝑀𝑌))‘0) ∈ V) | |
12 | 4, 8, 9, 10, 11 | ovmpt2d 6953 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆) ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁)) → (𝑋(𝐼‘𝑀)𝑌) = ((coe1‘(𝑋𝑀𝑌))‘0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 Fincfn 8121 0cc0 10128 coe1cco1 19750 ConstPolyMat ccpmat 20710 cPolyMatToMat ccpmat2mat 20712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-cpmat2mat 20715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |