![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | simprl 770 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
4 | 3 | nex 1798 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1798 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | elxp 5718 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
7 | 5, 6 | mtbir 323 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
8 | 7 | nel0 4377 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 〈cop 4654 × cxp 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5701 |
This theorem is referenced by: dmxpid 5950 csbres 6007 res0 6008 xp0 6184 xpnz 6185 xpdisj1 6187 difxp2 6192 xpcan2 6203 xpima 6208 unixp 6308 unixpid 6310 xpcoid 6316 fodomr 9188 xpfiOLD 9381 fodomfir 9390 iundom2g 10603 hashxplem 14476 dmtrclfv 15061 ramcl 17070 0subcat 17896 mat0dimbas0 22485 mavmul0g 22572 txindislem 23654 txhaus 23668 tmdgsum 24116 ust0 24241 ehl0 25462 mbf0 25680 hashxpe 32806 gsumpart 33030 erlval 33222 fracbas 33264 sibf0 34291 lpadlem3 34647 mexval2 35463 poimirlem5 37577 poimirlem10 37582 poimirlem22 37594 poimirlem23 37595 poimirlem26 37598 poimirlem28 37600 0no 43392 0heALT 43740 |
Copyright terms: Public domain | W3C validator |