MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xp Structured version   Visualization version   GIF version

Theorem 0xp 5737
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4301 . . . . . 6 ¬ 𝑥 ∈ ∅
2 simprl 770 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
31, 2mto 197 . . . . 5 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
43nex 1800 . . . 4 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1800 . . 3 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
6 elxp 5661 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
75, 6mtbir 323 . 2 ¬ 𝑧 ∈ (∅ × 𝐴)
87nel0 4317 1 (∅ × 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4296  cop 4595   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644
This theorem is referenced by:  dmxpid  5894  csbres  5953  res0  5954  xp0  6131  xpnz  6132  xpdisj1  6134  difxp2  6139  xpcan2  6150  xpima  6155  unixp  6255  unixpid  6257  xpcoid  6263  fodomr  9092  xpfiOLD  9270  fodomfir  9279  iundom2g  10493  hashxplem  14398  dmtrclfv  14984  ramcl  17000  0subcat  17800  mat0dimbas0  22353  mavmul0g  22440  txindislem  23520  txhaus  23534  tmdgsum  23982  ust0  24107  ehl0  25317  mbf0  25535  hashxpe  32732  gsumpart  32997  erlval  33209  fracbas  33255  sibf0  34325  lpadlem3  34669  mexval2  35490  poimirlem5  37619  poimirlem10  37624  poimirlem22  37636  poimirlem23  37637  poimirlem26  37640  poimirlem28  37642  0no  43424  0heALT  43772  dmrnxp  48825  0funcg2  49073  0funcALT  49077
  Copyright terms: Public domain W3C validator