Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfint3 Structured version   Visualization version   GIF version

Theorem dfint3 32365
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
dfint3 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))

Proof of Theorem dfint3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4629 . 2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
2 ralnex 3130 . . . 4 (∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥 ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
3 vex 3343 . . . . . . . . 9 𝑦 ∈ V
4 vex 3343 . . . . . . . . 9 𝑥 ∈ V
53, 4brcnv 5460 . . . . . . . 8 (𝑦(V ∖ E )𝑥𝑥(V ∖ E )𝑦)
6 brv 5089 . . . . . . . . 9 𝑥V𝑦
7 brdif 4857 . . . . . . . . 9 (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦))
86, 7mpbiran 991 . . . . . . . 8 (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦)
95, 8bitr2i 265 . . . . . . 7 𝑥 E 𝑦𝑦(V ∖ E )𝑥)
109con1bii 345 . . . . . 6 𝑦(V ∖ E )𝑥𝑥 E 𝑦)
11 epel 5182 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
1210, 11bitr2i 265 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑦(V ∖ E )𝑥)
1312ralbii 3118 . . . 4 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥)
14 eldif 3725 . . . . . 6 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴)))
154, 14mpbiran 991 . . . . 5 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴))
164elima 5629 . . . . 5 (𝑥 ∈ ((V ∖ E ) “ 𝐴) ↔ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
1715, 16xchbinx 323 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
182, 13, 173bitr4ri 293 . . 3 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ∀𝑦𝐴 𝑥𝑦)
1918abbi2i 2876 . 2 (V ∖ ((V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
201, 19eqtr4i 2785 1 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1632  wcel 2139  {cab 2746  wral 3050  wrex 3051  Vcvv 3340  cdif 3712   cint 4627   class class class wbr 4804   E cep 5178  ccnv 5265  cima 5269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-int 4628  df-br 4805  df-opab 4865  df-eprel 5179  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator