Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsucon Structured version   Visualization version   GIF version

Theorem dfsucon 39963
Description: 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.)
Assertion
Ref Expression
dfsucon ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dfsucon
StepHypRef Expression
1 3ancomb 1094 . . . 4 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴))
2 df-3an 1084 . . . 4 ((Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴))
3 df-ne 3016 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
43anbi2i 624 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ ¬ 𝐴 = ∅))
54imbi1i 352 . . . . . . 7 (((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ ((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 pm5.6 998 . . . . . . 7 (((Ord 𝐴 ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
7 iman 404 . . . . . . 7 ((Ord 𝐴 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
85, 6, 73bitrri 300 . . . . . 6 (¬ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
9 dflim3 7559 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
108, 9xchnxbir 335 . . . . 5 (¬ Lim 𝐴 ↔ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥))
1110anbi2i 624 . . . 4 (((Ord 𝐴𝐴 ≠ ∅) ∧ ¬ Lim 𝐴) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
121, 2, 113bitri 299 . . 3 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
13 pm3.35 801 . . 3 (((Ord 𝐴𝐴 ≠ ∅) ∧ ((Ord 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
1412, 13sylbi 219 . 2 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
15 eloni 6198 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
16 ordsuc 7526 . . . . . 6 (Ord 𝑥 ↔ Ord suc 𝑥)
1715, 16sylib 220 . . . . 5 (𝑥 ∈ On → Ord suc 𝑥)
18 nlimsucg 7554 . . . . 5 (𝑥 ∈ On → ¬ Lim suc 𝑥)
19 nsuceq0 6268 . . . . . 6 suc 𝑥 ≠ ∅
2019a1i 11 . . . . 5 (𝑥 ∈ On → suc 𝑥 ≠ ∅)
2117, 18, 203jca 1123 . . . 4 (𝑥 ∈ On → (Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅))
22 ordeq 6195 . . . . 5 (𝐴 = suc 𝑥 → (Ord 𝐴 ↔ Ord suc 𝑥))
23 limeq 6200 . . . . . 6 (𝐴 = suc 𝑥 → (Lim 𝐴 ↔ Lim suc 𝑥))
2423notbid 320 . . . . 5 (𝐴 = suc 𝑥 → (¬ Lim 𝐴 ↔ ¬ Lim suc 𝑥))
25 neeq1 3077 . . . . 5 (𝐴 = suc 𝑥 → (𝐴 ≠ ∅ ↔ suc 𝑥 ≠ ∅))
2622, 24, 253anbi123d 1431 . . . 4 (𝐴 = suc 𝑥 → ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ (Ord suc 𝑥 ∧ ¬ Lim suc 𝑥 ∧ suc 𝑥 ≠ ∅)))
2721, 26syl5ibrcom 249 . . 3 (𝑥 ∈ On → (𝐴 = suc 𝑥 → (Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅)))
2827rexlimiv 3279 . 2 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅))
2914, 28impbii 211 1 ((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wrex 3138  c0 4288  Ord word 6187  Oncon0 6188  Lim wlim 6189  suc csuc 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327  ax-un 7458
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-tr 5170  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator