![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxrn2 | Structured version Visualization version GIF version |
Description: Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
Ref | Expression |
---|---|
dfxrn2 | ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnrel 34476 | . . 3 ⊢ Rel (𝑅 ⋉ 𝑆) | |
2 | dfrel4v 5742 | . . 3 ⊢ (Rel (𝑅 ⋉ 𝑆) ↔ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧}) | |
3 | 1, 2 | mpbi 220 | . 2 ⊢ (𝑅 ⋉ 𝑆) = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
4 | breq2 4808 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉)) | |
5 | brxrn2 34478 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
6 | 5 | elv 34327 | . . . . 5 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
7 | brxrn 34477 | . . . . . . . . 9 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
8 | 7 | el3v 34331 | . . . . . . . 8 ⊢ (𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉 ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
9 | 8 | anbi2i 732 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
10 | 3anass 1081 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 9, 10 | bitr4i 267 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | 2exbii 1924 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 4 | copsex2gb 5386 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉) ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
14 | 6, 12, 13 | 3bitr2i 288 | . . . 4 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 ↔ (𝑧 ∈ (V × V) ∧ 𝑢(𝑅 ⋉ 𝑆)𝑧)) |
15 | 14 | simplbi 478 | . . 3 ⊢ (𝑢(𝑅 ⋉ 𝑆)𝑧 → 𝑧 ∈ (V × V)) |
16 | 4, 15 | cnvoprab 7398 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈𝑢, 𝑧〉 ∣ 𝑢(𝑅 ⋉ 𝑆)𝑧} |
17 | 8 | oprabbii 6876 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
18 | 17 | cnveqi 5452 | . 2 ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ 𝑢(𝑅 ⋉ 𝑆)〈𝑥, 𝑦〉} = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
19 | 3, 16, 18 | 3eqtr2i 2788 | 1 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 Vcvv 3340 〈cop 4327 class class class wbr 4804 {copab 4864 × cxp 5264 ◡ccnv 5265 Rel wrel 5271 {coprab 6815 ⋉ cxrn 34313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-oprab 6818 df-1st 7334 df-2nd 7335 df-xrn 34474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |