MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuunxp Structured version   Visualization version   GIF version

Theorem djuunxp 9350
Description: The union of a disjoint union and its inversion is the Cartesian product of an unordered pair and the union of the left and right classes of the disjoint unions. (Proposed by GL, 4-Jul-2022.) (Contributed by AV, 4-Jul-2022.)
Assertion
Ref Expression
djuunxp ((𝐴𝐵) ∪ (𝐵𝐴)) = ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuunxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djuss 9349 . . 3 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 djuss 9349 . . . 4 (𝐵𝐴) ⊆ ({∅, 1o} × (𝐵𝐴))
3 uncom 4129 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
43xpeq2i 5582 . . . 4 ({∅, 1o} × (𝐴𝐵)) = ({∅, 1o} × (𝐵𝐴))
52, 4sseqtrri 4004 . . 3 (𝐵𝐴) ⊆ ({∅, 1o} × (𝐴𝐵))
61, 5unssi 4161 . 2 ((𝐴𝐵) ∪ (𝐵𝐴)) ⊆ ({∅, 1o} × (𝐴𝐵))
7 elxpi 5577 . . . 4 (𝑥 ∈ ({∅, 1o} × (𝐴𝐵)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵))))
8 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
98elpr 4590 . . . . . . . . 9 (𝑦 ∈ {∅, 1o} ↔ (𝑦 = ∅ ∨ 𝑦 = 1o))
10 elun 4125 . . . . . . . . 9 (𝑧 ∈ (𝐴𝐵) ↔ (𝑧𝐴𝑧𝐵))
11 velsn 4583 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1211biimpri 230 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ∅ → 𝑦 ∈ {∅})
1312anim1i 616 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = ∅ ∧ 𝑧𝐴) → (𝑦 ∈ {∅} ∧ 𝑧𝐴))
1413ancoms 461 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑦 = ∅) → (𝑦 ∈ {∅} ∧ 𝑧𝐴))
15 opelxp 5591 . . . . . . . . . . . . . . . . . 18 (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐴) ↔ (𝑦 ∈ {∅} ∧ 𝑧𝐴))
1614, 15sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑦 = ∅) → ⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐴))
1716orcd 869 . . . . . . . . . . . . . . . 16 ((𝑧𝐴𝑦 = ∅) → (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐴) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐵)))
18 elun 4125 . . . . . . . . . . . . . . . 16 (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐴) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐵)))
1917, 18sylibr 236 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑦 = ∅) → ⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2019orcd 869 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦 = ∅) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
2120ex 415 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝑦 = ∅ → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
2212anim1i 616 . . . . . . . . . . . . . . . . . 18 ((𝑦 = ∅ ∧ 𝑧𝐵) → (𝑦 ∈ {∅} ∧ 𝑧𝐵))
2322ancoms 461 . . . . . . . . . . . . . . . . 17 ((𝑧𝐵𝑦 = ∅) → (𝑦 ∈ {∅} ∧ 𝑧𝐵))
24 opelxp 5591 . . . . . . . . . . . . . . . . 17 (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ↔ (𝑦 ∈ {∅} ∧ 𝑧𝐵))
2523, 24sylibr 236 . . . . . . . . . . . . . . . 16 ((𝑧𝐵𝑦 = ∅) → ⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵))
2625orcd 869 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑦 = ∅) → (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))
2726olcd 870 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑦 = ∅) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
2827ex 415 . . . . . . . . . . . . 13 (𝑧𝐵 → (𝑦 = ∅ → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
2921, 28jaoi 853 . . . . . . . . . . . 12 ((𝑧𝐴𝑧𝐵) → (𝑦 = ∅ → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
3029com12 32 . . . . . . . . . . 11 (𝑦 = ∅ → ((𝑧𝐴𝑧𝐵) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
31 velsn 4583 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {1o} ↔ 𝑦 = 1o)
3231biimpri 230 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1o𝑦 ∈ {1o})
3332anim1i 616 . . . . . . . . . . . . . . . . . 18 ((𝑦 = 1o𝑧𝐴) → (𝑦 ∈ {1o} ∧ 𝑧𝐴))
3433ancoms 461 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑦 = 1o) → (𝑦 ∈ {1o} ∧ 𝑧𝐴))
35 opelxp 5591 . . . . . . . . . . . . . . . . 17 (⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴) ↔ (𝑦 ∈ {1o} ∧ 𝑧𝐴))
3634, 35sylibr 236 . . . . . . . . . . . . . . . 16 ((𝑧𝐴𝑦 = 1o) → ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))
3736olcd 870 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑦 = 1o) → (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))
3837olcd 870 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦 = 1o) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
3938ex 415 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝑦 = 1o → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
4032anim1i 616 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = 1o𝑧𝐵) → (𝑦 ∈ {1o} ∧ 𝑧𝐵))
4140ancoms 461 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐵𝑦 = 1o) → (𝑦 ∈ {1o} ∧ 𝑧𝐵))
42 opelxp 5591 . . . . . . . . . . . . . . . . . 18 (⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐵) ↔ (𝑦 ∈ {1o} ∧ 𝑧𝐵))
4341, 42sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝑧𝐵𝑦 = 1o) → ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐵))
4443olcd 870 . . . . . . . . . . . . . . . 16 ((𝑧𝐵𝑦 = 1o) → (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐴) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐵)))
4544, 18sylibr 236 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑦 = 1o) → ⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
4645orcd 869 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑦 = 1o) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
4746ex 415 . . . . . . . . . . . . 13 (𝑧𝐵 → (𝑦 = 1o → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
4839, 47jaoi 853 . . . . . . . . . . . 12 ((𝑧𝐴𝑧𝐵) → (𝑦 = 1o → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
4948com12 32 . . . . . . . . . . 11 (𝑦 = 1o → ((𝑧𝐴𝑧𝐵) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
5030, 49jaoi 853 . . . . . . . . . 10 ((𝑦 = ∅ ∨ 𝑦 = 1o) → ((𝑧𝐴𝑧𝐵) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))))
5150imp 409 . . . . . . . . 9 (((𝑦 = ∅ ∨ 𝑦 = 1o) ∧ (𝑧𝐴𝑧𝐵)) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
529, 10, 51syl2anb 599 . . . . . . . 8 ((𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵)) → (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
53 elun 4125 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ (𝐵𝐴)))
54 df-dju 9330 . . . . . . . . . . 11 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
5554eleq2i 2904 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
56 df-dju 9330 . . . . . . . . . . . 12 (𝐵𝐴) = (({∅} × 𝐵) ∪ ({1o} × 𝐴))
5756eleq2i 2904 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (𝐵𝐴) ↔ ⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐵) ∪ ({1o} × 𝐴)))
58 elun 4125 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐵) ∪ ({1o} × 𝐴)) ↔ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))
5957, 58bitri 277 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩ ∈ (𝐵𝐴) ↔ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴)))
6055, 59orbi12i 911 . . . . . . . . 9 ((⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ (𝐵𝐴)) ↔ (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
6153, 60bitri 277 . . . . . . . 8 (⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (⟨𝑦, 𝑧⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ∨ (⟨𝑦, 𝑧⟩ ∈ ({∅} × 𝐵) ∨ ⟨𝑦, 𝑧⟩ ∈ ({1o} × 𝐴))))
6252, 61sylibr 236 . . . . . . 7 ((𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵)) → ⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴)))
6362adantl 484 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵))) → ⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴)))
64 eleq1 2900 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴))))
6564adantr 483 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵))) → (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ ⟨𝑦, 𝑧⟩ ∈ ((𝐴𝐵) ∪ (𝐵𝐴))))
6663, 65mpbird 259 . . . . 5 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵))) → 𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)))
6766exlimivv 1933 . . . 4 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅, 1o} ∧ 𝑧 ∈ (𝐴𝐵))) → 𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)))
687, 67syl 17 . . 3 (𝑥 ∈ ({∅, 1o} × (𝐴𝐵)) → 𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)))
6968ssriv 3971 . 2 ({∅, 1o} × (𝐴𝐵)) ⊆ ((𝐴𝐵) ∪ (𝐵𝐴))
706, 69eqssi 3983 1 ((𝐴𝐵) ∪ (𝐵𝐴)) = ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  cun 3934  c0 4291  {csn 4567  {cpr 4569  cop 4573   × cxp 5553  1oc1o 8095  cdju 9327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fv 6363  df-1st 7689  df-2nd 7690  df-1o 8102  df-dju 9330  df-inl 9331  df-inr 9332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator