MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecovcom Structured version   Visualization version   GIF version

Theorem ecovcom 8403
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovcom.1 𝐶 = ((𝑆 × 𝑆) / )
ecovcom.2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
ecovcom.3 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
ecovcom.4 𝐷 = 𝐻
ecovcom.5 𝐺 = 𝐽
Assertion
Ref Expression
ecovcom ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥, + ,𝑦,𝑧,𝑤   𝑥, ,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤   𝑧,𝐶,𝑤
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑥,𝑦,𝑧,𝑤)   𝐽(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ecovcom
StepHypRef Expression
1 ecovcom.1 . 2 𝐶 = ((𝑆 × 𝑆) / )
2 oveq1 7163 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = (𝐴 + [⟨𝑧, 𝑤⟩] ))
3 oveq2 7164 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴))
42, 3eqeq12d 2837 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) ↔ (𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴)))
5 oveq2 7164 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ) = (𝐴 + 𝐵))
6 oveq1 7163 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + 𝐴) = (𝐵 + 𝐴))
75, 6eqeq12d 2837 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
8 ecovcom.4 . . . 4 𝐷 = 𝐻
9 ecovcom.5 . . . 4 𝐺 = 𝐽
10 opeq12 4805 . . . . 5 ((𝐷 = 𝐻𝐺 = 𝐽) → ⟨𝐷, 𝐺⟩ = ⟨𝐻, 𝐽⟩)
1110eceq1d 8328 . . . 4 ((𝐷 = 𝐻𝐺 = 𝐽) → [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩] )
128, 9, 11mp2an 690 . . 3 [⟨𝐷, 𝐺⟩] = [⟨𝐻, 𝐽⟩]
13 ecovcom.2 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )
14 ecovcom.3 . . . 4 (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1514ancoms 461 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )
1612, 13, 153eqtr4a 2882 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ))
171, 4, 7, 162ecoptocl 8388 1 ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4573   × cxp 5553  (class class class)co 7156  [cec 8287   / cqs 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fv 6363  df-ov 7159  df-ec 8291  df-qs 8295
This theorem is referenced by:  addcomsr  10509  mulcomsr  10511  axmulcom  10577
  Copyright terms: Public domain W3C validator