MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldju1st Structured version   Visualization version   GIF version

Theorem eldju1st 9352
Description: The first component of an element of a disjoint union is either or 1o. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju1st (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))

Proof of Theorem eldju1st
StepHypRef Expression
1 djuss 9349 . 2 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
2 ssel2 3962 . . 3 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → 𝑋 ∈ ({∅, 1o} × (𝐴𝐵)))
3 xp1st 7721 . . 3 (𝑋 ∈ ({∅, 1o} × (𝐴𝐵)) → (1st𝑋) ∈ {∅, 1o})
4 elpri 4589 . . 3 ((1st𝑋) ∈ {∅, 1o} → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
52, 3, 43syl 18 . 2 (((𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)) ∧ 𝑋 ∈ (𝐴𝐵)) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
61, 5mpan 688 1 (𝑋 ∈ (𝐴𝐵) → ((1st𝑋) = ∅ ∨ (1st𝑋) = 1o))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cun 3934  wss 3936  c0 4291  {cpr 4569   × cxp 5553  cfv 6355  1st c1st 7687  1oc1o 8095  cdju 9327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fv 6363  df-1st 7689  df-2nd 7690  df-1o 8102  df-dju 9330  df-inl 9331  df-inr 9332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator