MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxp Structured version   Visualization version   GIF version

Theorem elidinxp 5911
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxp (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elidinxp
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 risset 3267 . . . . 5 (𝑥𝐵 ↔ ∃𝑦𝐵 𝑦 = 𝑥)
21anbi2ci 626 . . . 4 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
3 r19.42v 3350 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑥⟩ ∧ ∃𝑦𝐵 𝑦 = 𝑥))
4 opeq2 4804 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
54equcoms 2027 . . . . . . . 8 (𝑦 = 𝑥 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
65eqeq2d 2832 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = ⟨𝑥, 𝑥⟩ ↔ 𝐶 = ⟨𝑥, 𝑦⟩))
76pm5.32ri 578 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
8 vex 3497 . . . . . . . . 9 𝑦 ∈ V
98ideq 5723 . . . . . . . 8 (𝑥 I 𝑦𝑥 = 𝑦)
10 df-br 5067 . . . . . . . 8 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
11 equcom 2025 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
129, 10, 113bitr3i 303 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑦 = 𝑥)
1312anbi2i 624 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝑦 = 𝑥))
147, 13bitr4i 280 . . . . 5 ((𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1514rexbii 3247 . . . 4 (∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑥⟩ ∧ 𝑦 = 𝑥) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
162, 3, 153bitr2i 301 . . 3 ((𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
1716rexbii 3247 . 2 (∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
18 rexin 4216 . 2 (∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 (𝑥𝐵𝐶 = ⟨𝑥, 𝑥⟩))
19 elinxp 5890 . 2 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
2017, 18, 193bitr4ri 306 1 (𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  cin 3935  cop 4573   class class class wbr 5066   I cid 5459   × cxp 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562
This theorem is referenced by:  elidinxpid  5912  elrid  5913  idinxpres  5914
  Copyright terms: Public domain W3C validator