MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo1 Structured version   Visualization version   GIF version

Theorem elo1 14251
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo1 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
Distinct variable group:   𝑥,𝑚,𝑦,𝐹

Proof of Theorem elo1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5322 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21ineq1d 3811 . . . 4 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
3 fveq1 6188 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
43fveq2d 6193 . . . . 5 (𝑓 = 𝐹 → (abs‘(𝑓𝑦)) = (abs‘(𝐹𝑦)))
54breq1d 4661 . . . 4 (𝑓 = 𝐹 → ((abs‘(𝑓𝑦)) ≤ 𝑚 ↔ (abs‘(𝐹𝑦)) ≤ 𝑚))
62, 5raleqbidv 3150 . . 3 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
762rexbidv 3055 . 2 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 df-o1 14215 . 2 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
97, 8elrab2 3364 1 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  wrex 2912  cin 3571   class class class wbr 4651  dom cdm 5112  cfv 5886  (class class class)co 6647  pm cpm 7855  cc 9931  cr 9932  +∞cpnf 10068  cle 10072  [,)cico 12174  abscabs 13968  𝑂(1)co1 14211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-dm 5122  df-iota 5849  df-fv 5894  df-o1 14215
This theorem is referenced by:  elo12  14252  o1f  14254  o1dm  14255
  Copyright terms: Public domain W3C validator