MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12 Structured version   Visualization version   GIF version

Theorem elo12 14049
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elo12
StepHypRef Expression
1 cnex 9870 . . . 4 ℂ ∈ V
2 reex 9880 . . . 4 ℝ ∈ V
3 elpm2r 7735 . . . 4 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
41, 2, 3mpanl12 713 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5 elo1 14048 . . . 4 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
65baib 941 . . 3 (𝐹 ∈ (ℂ ↑pm ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
74, 6syl 17 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 elin 3754 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)))
9 fdm 5947 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
109ad3antrrr 761 . . . . . . . . . . 11 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐴)
1110eleq2d 2669 . . . . . . . . . 10 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹𝑦𝐴))
1211anbi1d 736 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑦 ∈ (𝑥[,)+∞))))
13 simpllr 794 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
14 elicopnf 12093 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1513, 14syl 17 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
16 simpllr 794 . . . . . . . . . . . . 13 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐴 ⊆ ℝ)
1716sselda 3564 . . . . . . . . . . . 12 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1817biantrurd 527 . . . . . . . . . . 11 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
1915, 18bitr4d 269 . . . . . . . . . 10 (((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥𝑦))
2019pm5.32da 670 . . . . . . . . 9 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦𝐴𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2112, 20bitrd 266 . . . . . . . 8 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
228, 21syl5bb 270 . . . . . . 7 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦𝐴𝑥𝑦)))
2322imbi1d 329 . . . . . 6 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ ((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚)))
24 impexp 460 . . . . . 6 (((𝑦𝐴𝑥𝑦) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2523, 24syl6bb 274 . . . . 5 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (abs‘(𝐹𝑦)) ≤ 𝑚) ↔ (𝑦𝐴 → (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))))
2625ralbidv2 2963 . . . 4 ((((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2726rexbidva 3027 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
2827rexbidva 3027 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
297, 28bitrd 266 1 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893  Vcvv 3169  cin 3535  wss 3536   class class class wbr 4574  dom cdm 5025  wf 5783  cfv 5787  (class class class)co 6524  pm cpm 7719  cc 9787  cr 9788  +∞cpnf 9924  cle 9928  [,)cico 12001  abscabs 13765  𝑂(1)co1 14008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-pre-lttri 9863  ax-pre-lttrn 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-po 4946  df-so 4947  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-er 7603  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-ico 12005  df-o1 14012
This theorem is referenced by:  elo12r  14050  o1bdd  14053  lo1o1  14054  o1co  14108  rlimo1  14138
  Copyright terms: Public domain W3C validator