MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eloprabg Structured version   Visualization version   GIF version

Theorem eloprabg 6733
Description: The law of concretion for operation class abstraction. Compare elopab 4973. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
eloprabg.2 (𝑦 = 𝐵 → (𝜓𝜒))
eloprabg.3 (𝑧 = 𝐶 → (𝜒𝜃))
Assertion
Ref Expression
eloprabg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 eloprabg.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
3 eloprabg.3 . . 3 (𝑧 = 𝐶 → (𝜒𝜃))
41, 2, 3syl3an9b 1395 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜃))
54eloprabga 6732 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1481  wcel 1988  cop 4174  {coprab 6636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-oprab 6639
This theorem is referenced by:  ov  6765  ovg  6784  brbtwn  25760  isnvlem  27435  isphg  27642  fvtransport  32114  brcolinear2  32140  colineardim1  32143  fvray  32223  fvline  32226
  Copyright terms: Public domain W3C validator