MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-opab Structured version   Visualization version   GIF version

Theorem ex-opab 28211
Description: Example for df-opab 5129. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-opab (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem ex-opab
StepHypRef Expression
1 3cn 11719 . . 3 3 ∈ ℂ
2 4cn 11723 . . 3 4 ∈ ℂ
3 3p1e4 11783 . . 3 (3 + 1) = 4
41elexi 3513 . . . 4 3 ∈ V
52elexi 3513 . . . 4 4 ∈ V
6 eleq1 2900 . . . . 5 (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ))
7 oveq1 7163 . . . . . 6 (𝑥 = 3 → (𝑥 + 1) = (3 + 1))
87eqeq1d 2823 . . . . 5 (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦))
96, 83anbi13d 1434 . . . 4 (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦)))
10 eleq1 2900 . . . . 5 (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ))
11 eqeq2 2833 . . . . 5 (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4))
1210, 113anbi23d 1435 . . . 4 (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)))
13 eqid 2821 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}
144, 5, 9, 12, 13brab 5430 . . 3 (3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))
151, 2, 3, 14mpbir3an 1337 . 2 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4
16 breq 5068 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4))
1715, 16mpbiri 260 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  {copab 5128  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540  3c3 11694  4c4 11695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-iota 6314  df-fv 6363  df-ov 7159  df-2 11701  df-3 11702  df-4 11703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator