MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1iun Structured version   Visualization version   GIF version

Theorem f1iun 7645
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof shortened by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
fiun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fiun.2 𝐵 ∈ V
Assertion
Ref Expression
f1iun (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem f1iun
Dummy variables 𝑣 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . . . . . . 10 𝑢 ∈ V
2 eqeq1 2825 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 3297 . . . . . . . . . 10 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 3667 . . . . . . . . 9 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 3254 . . . . . . . . . 10 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1915 . . . . . . . . . . . 12 𝑥(Fun 𝑢 ∧ Fun 𝑢)
7 nfre1 3306 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2984 . . . . . . . . . . . . 13 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1915 . . . . . . . . . . . . 13 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralw 3225 . . . . . . . . . . . 12 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1900 . . . . . . . . . . 11 𝑥((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 f1eq1 6570 . . . . . . . . . . . . . . . 16 (𝑢 = 𝐵 → (𝑢:𝐷1-1𝑆𝐵:𝐷1-1𝑆))
1312biimparc 482 . . . . . . . . . . . . . . 15 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → 𝑢:𝐷1-1𝑆)
14 df-f1 6360 . . . . . . . . . . . . . . . 16 (𝑢:𝐷1-1𝑆 ↔ (𝑢:𝐷𝑆 ∧ Fun 𝑢))
15 ffun 6517 . . . . . . . . . . . . . . . . 17 (𝑢:𝐷𝑆 → Fun 𝑢)
1615anim1i 616 . . . . . . . . . . . . . . . 16 ((𝑢:𝐷𝑆 ∧ Fun 𝑢) → (Fun 𝑢 ∧ Fun 𝑢))
1714, 16sylbi 219 . . . . . . . . . . . . . . 15 (𝑢:𝐷1-1𝑆 → (Fun 𝑢 ∧ Fun 𝑢))
1813, 17syl 17 . . . . . . . . . . . . . 14 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
1918adantlr 713 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
20 f1f 6575 . . . . . . . . . . . . . 14 (𝐵:𝐷1-1𝑆𝐵:𝐷𝑆)
21 fiun.1 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦𝐵 = 𝐶)
2221fiunlem 7643 . . . . . . . . . . . . . 14 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
2320, 22sylanl1 678 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
2419, 23jca 514 . . . . . . . . . . . 12 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2524a1i 11 . . . . . . . . . . 11 (𝑥𝐴 → (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
2611, 25rexlimi 3315 . . . . . . . . . 10 (∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
275, 26syl 17 . . . . . . . . 9 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
284, 27sylan2b 595 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2928ralrimiva 3182 . . . . . . 7 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
30 fun11uni 7637 . . . . . . 7 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
3129, 30syl 17 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
3231simpld 497 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
33 fiun.2 . . . . . . 7 𝐵 ∈ V
3433dfiun2 4958 . . . . . 6 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
3534funeqi 6376 . . . . 5 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
3632, 35sylibr 236 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
371eldm2 5770 . . . . . . . . 9 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
38 f1dm 6579 . . . . . . . . . 10 (𝐵:𝐷1-1𝑆 → dom 𝐵 = 𝐷)
3938eleq2d 2898 . . . . . . . . 9 (𝐵:𝐷1-1𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
4037, 39syl5bbr 287 . . . . . . . 8 (𝐵:𝐷1-1𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
4140adantr 483 . . . . . . 7 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
4241ralrexbid 3322 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
43 eliun 4923 . . . . . . . 8 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4443exbii 1848 . . . . . . 7 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
451eldm2 5770 . . . . . . 7 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
46 rexcom4 3249 . . . . . . 7 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4744, 45, 463bitr4i 305 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
48 eliun 4923 . . . . . 6 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
4942, 47, 483bitr4g 316 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
5049eqrdv 2819 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
51 df-fn 6358 . . . 4 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
5236, 50, 51sylanbrc 585 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
53 rniun 6006 . . . 4 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
5420frnd 6521 . . . . . . 7 (𝐵:𝐷1-1𝑆 → ran 𝐵𝑆)
5554adantr 483 . . . . . 6 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
5655ralimi 3160 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
57 iunss 4969 . . . . 5 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
5856, 57sylibr 236 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
5953, 58eqsstrid 4015 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
60 df-f 6359 . . 3 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
6152, 59, 60sylanbrc 585 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
6231simprd 498 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
6334cnveqi 5745 . . . 4 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
6463funeqi 6376 . . 3 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
6562, 64sylibr 236 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
66 df-f1 6360 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵))
6761, 65, 66sylanbrc 585 1 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  wss 3936  cop 4573   cuni 4838   ciun 4919  ccnv 5554  dom cdm 5555  ran crn 5556  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360
This theorem is referenced by:  ackbij2  9665
  Copyright terms: Public domain W3C validator