Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1o3d Structured version   Visualization version   GIF version

Theorem f1o3d 29272
Description: Describe an implicit one-to-one onto function. (Contributed by Thierry Arnoux, 23-Apr-2017.)
Hypotheses
Ref Expression
f1o3d.1 (𝜑𝐹 = (𝑥𝐴𝐶))
f1o3d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o3d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o3d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1o3d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1o3d
StepHypRef Expression
1 f1o3d.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
21ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2621 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fnmpt 5977 . . . . 5 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴𝐶) Fn 𝐴)
52, 4syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
6 f1o3d.1 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐶))
76fneq1d 5939 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
85, 7mpbird 247 . . 3 (𝜑𝐹 Fn 𝐴)
9 f1o3d.3 . . . . . 6 ((𝜑𝑦𝐵) → 𝐷𝐴)
109ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑦𝐵 𝐷𝐴)
11 eqid 2621 . . . . . 6 (𝑦𝐵𝐷) = (𝑦𝐵𝐷)
1211fnmpt 5977 . . . . 5 (∀𝑦𝐵 𝐷𝐴 → (𝑦𝐵𝐷) Fn 𝐵)
1310, 12syl 17 . . . 4 (𝜑 → (𝑦𝐵𝐷) Fn 𝐵)
14 eleq1a 2693 . . . . . . . . . . 11 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
151, 14syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
1615impr 648 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
17 f1o3d.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
1817biimpar 502 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
1918exp42 638 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
2019com34 91 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
2120imp32 449 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
2216, 21jcai 558 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
23 eleq1a 2693 . . . . . . . . . . 11 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
249, 23syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
2524impr 648 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
2617biimpa 501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
2726exp42 638 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
2827com23 86 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
2928com34 91 . . . . . . . . . 10 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
3029imp32 449 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3125, 30jcai 558 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
3222, 31impbida 876 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
3332opabbidv 4678 . . . . . 6 (𝜑 → {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
34 df-mpt 4675 . . . . . . . . 9 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
356, 34syl6eq 2671 . . . . . . . 8 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
3635cnveqd 5258 . . . . . . 7 (𝜑𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
37 cnvopab 5492 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3836, 37syl6eq 2671 . . . . . 6 (𝜑𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
39 df-mpt 4675 . . . . . . 7 (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)}
4039a1i 11 . . . . . 6 (𝜑 → (𝑦𝐵𝐷) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐵𝑥 = 𝐷)})
4133, 38, 403eqtr4d 2665 . . . . 5 (𝜑𝐹 = (𝑦𝐵𝐷))
4241fneq1d 5939 . . . 4 (𝜑 → (𝐹 Fn 𝐵 ↔ (𝑦𝐵𝐷) Fn 𝐵))
4313, 42mpbird 247 . . 3 (𝜑𝐹 Fn 𝐵)
44 dff1o4 6102 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
458, 43, 44sylanbrc 697 . 2 (𝜑𝐹:𝐴1-1-onto𝐵)
4645, 41jca 554 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {copab 4672  cmpt 4673  ccnv 5073   Fn wfn 5842  1-1-ontowf1o 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854
This theorem is referenced by:  ballotlemsf1o  30353
  Copyright terms: Public domain W3C validator