MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ofveu Structured version   Visualization version   GIF version

Theorem f1ofveu 7151
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 6627 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1of 6615 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
31, 2syl 17 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
4 feu 6554 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
53, 4sylan 582 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹)
6 f1ocnvfvb 7036 . . . . . 6 ((𝐹:𝐴1-1-onto𝐵𝑥𝐴𝐶𝐵) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
763com23 1122 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝐶) = 𝑥))
8 dff1o4 6623 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
98simprbi 499 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵)
10 fnopfvb 6719 . . . . . . 7 ((𝐹 Fn 𝐵𝐶𝐵) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
11103adant3 1128 . . . . . 6 ((𝐹 Fn 𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
129, 11syl3an1 1159 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝐶) = 𝑥 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
137, 12bitrd 281 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
14133expa 1114 . . 3 (((𝐹:𝐴1-1-onto𝐵𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝐶 ↔ ⟨𝐶, 𝑥⟩ ∈ 𝐹))
1514reubidva 3388 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (∃!𝑥𝐴 (𝐹𝑥) = 𝐶 ↔ ∃!𝑥𝐴𝐶, 𝑥⟩ ∈ 𝐹))
165, 15mpbird 259 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ∃!𝑥𝐴 (𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ∃!wreu 3140  cop 4573  ccnv 5554   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by:  1arith2  16264  disjrdx  30341  reuf1odnf  43326  reuf1od  43327
  Copyright terms: Public domain W3C validator