MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw2 Structured version   Visualization version   GIF version

Theorem f1opw2 7400
Description: A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 7401 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
f1opw2.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1opw2.2 (𝜑 → (𝐹𝑎) ∈ V)
f1opw2.3 (𝜑 → (𝐹𝑏) ∈ V)
Assertion
Ref Expression
f1opw2 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem f1opw2
StepHypRef Expression
1 eqid 2821 . 2 (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)) = (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏))
2 f1opw2.3 . . . 4 (𝜑 → (𝐹𝑏) ∈ V)
3 imassrn 5940 . . . . 5 (𝐹𝑏) ⊆ ran 𝐹
4 f1opw2.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐵)
5 f1ofo 6622 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
64, 5syl 17 . . . . . 6 (𝜑𝐹:𝐴onto𝐵)
7 forn 6593 . . . . . 6 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
86, 7syl 17 . . . . 5 (𝜑 → ran 𝐹 = 𝐵)
93, 8sseqtrid 4019 . . . 4 (𝜑 → (𝐹𝑏) ⊆ 𝐵)
102, 9elpwd 4547 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝒫 𝐵)
1110adantr 483 . 2 ((𝜑𝑏 ∈ 𝒫 𝐴) → (𝐹𝑏) ∈ 𝒫 𝐵)
12 f1opw2.2 . . . 4 (𝜑 → (𝐹𝑎) ∈ V)
13 imassrn 5940 . . . . 5 (𝐹𝑎) ⊆ ran 𝐹
14 dfdm4 5764 . . . . . 6 dom 𝐹 = ran 𝐹
15 f1odm 6619 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
164, 15syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1714, 16syl5eqr 2870 . . . . 5 (𝜑 → ran 𝐹 = 𝐴)
1813, 17sseqtrid 4019 . . . 4 (𝜑 → (𝐹𝑎) ⊆ 𝐴)
1912, 18elpwd 4547 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝒫 𝐴)
2019adantr 483 . 2 ((𝜑𝑎 ∈ 𝒫 𝐵) → (𝐹𝑎) ∈ 𝒫 𝐴)
21 elpwi 4548 . . . . . . 7 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
2221adantl 484 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑎𝐵)
23 foimacnv 6632 . . . . . 6 ((𝐹:𝐴onto𝐵𝑎𝐵) → (𝐹 “ (𝐹𝑎)) = 𝑎)
246, 22, 23syl2an 597 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑎)) = 𝑎)
2524eqcomd 2827 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑎 = (𝐹 “ (𝐹𝑎)))
26 imaeq2 5925 . . . . 5 (𝑏 = (𝐹𝑎) → (𝐹𝑏) = (𝐹 “ (𝐹𝑎)))
2726eqeq2d 2832 . . . 4 (𝑏 = (𝐹𝑎) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹 “ (𝐹𝑎))))
2825, 27syl5ibrcom 249 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) → 𝑎 = (𝐹𝑏)))
29 f1of1 6614 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
304, 29syl 17 . . . . . 6 (𝜑𝐹:𝐴1-1𝐵)
31 elpwi 4548 . . . . . . 7 (𝑏 ∈ 𝒫 𝐴𝑏𝐴)
3231adantr 483 . . . . . 6 ((𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵) → 𝑏𝐴)
33 f1imacnv 6631 . . . . . 6 ((𝐹:𝐴1-1𝐵𝑏𝐴) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3430, 32, 33syl2an 597 . . . . 5 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝐹 “ (𝐹𝑏)) = 𝑏)
3534eqcomd 2827 . . . 4 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → 𝑏 = (𝐹 “ (𝐹𝑏)))
36 imaeq2 5925 . . . . 5 (𝑎 = (𝐹𝑏) → (𝐹𝑎) = (𝐹 “ (𝐹𝑏)))
3736eqeq2d 2832 . . . 4 (𝑎 = (𝐹𝑏) → (𝑏 = (𝐹𝑎) ↔ 𝑏 = (𝐹 “ (𝐹𝑏))))
3835, 37syl5ibrcom 249 . . 3 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑎 = (𝐹𝑏) → 𝑏 = (𝐹𝑎)))
3928, 38impbid 214 . 2 ((𝜑 ∧ (𝑏 ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐵)) → (𝑏 = (𝐹𝑎) ↔ 𝑎 = (𝐹𝑏)))
401, 11, 20, 39f1o2d 7399 1 (𝜑 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  𝒫 cpw 4539  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362
This theorem is referenced by:  f1opw  7401
  Copyright terms: Public domain W3C validator