Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumf1o Structured version   Visualization version   GIF version

Theorem esumf1o 31309
Description: Re-index an extended sum using a bijection. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
esumf1o.0 𝑛𝜑
esumf1o.b 𝑛𝐵
esumf1o.d 𝑘𝐷
esumf1o.a 𝑛𝐴
esumf1o.c 𝑛𝐶
esumf1o.f 𝑛𝐹
esumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
esumf1o.2 (𝜑𝐴𝑉)
esumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
esumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
esumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumf1o (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐶,𝑘   𝑘,𝐺   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝐶(𝑛)   𝐷(𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem esumf1o
StepHypRef Expression
1 xrge0base 30672 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0cmn 20587 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
32a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
4 xrge0tps 31185 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
54a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
6 esumf1o.2 . . . . 5 (𝜑𝐴𝑉)
7 esumf1o.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
87fmpttd 6879 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
9 esumf1o.3 . . . . 5 (𝜑𝐹:𝐶1-1-onto𝐴)
101, 3, 5, 6, 8, 9tsmsf1o 22753 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)))
11 esumf1o.b . . . . . 6 𝑛𝐵
12 esumf1o.d . . . . . 6 𝑘𝐷
13 esumf1o.c . . . . . 6 𝑛𝐶
14 esumf1o.a . . . . . 6 𝑛𝐴
15 esumf1o.0 . . . . . 6 𝑛𝜑
16 esumf1o.4 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
17 f1of 6615 . . . . . . . . . . 11 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
189, 17syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐶𝐴)
1918ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
2016, 19eqeltrrd 2914 . . . . . . . 8 ((𝜑𝑛𝐶) → 𝐺𝐴)
2120ex 415 . . . . . . 7 (𝜑 → (𝑛𝐶𝐺𝐴))
2215, 21ralrimi 3216 . . . . . 6 (𝜑 → ∀𝑛𝐶 𝐺𝐴)
23 esumf1o.f . . . . . . . 8 𝑛𝐹
2413, 23, 18feqmptdf 6735 . . . . . . 7 (𝜑𝐹 = (𝑛𝐶 ↦ (𝐹𝑛)))
2515, 16mpteq2da 5160 . . . . . . 7 (𝜑 → (𝑛𝐶 ↦ (𝐹𝑛)) = (𝑛𝐶𝐺))
2624, 25eqtrd 2856 . . . . . 6 (𝜑𝐹 = (𝑛𝐶𝐺))
27 eqidd 2822 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
28 esumf1o.1 . . . . . 6 (𝑘 = 𝐺𝐵 = 𝐷)
2911, 12, 13, 14, 15, 22, 26, 27, 28fmptcof2 30402 . . . . 5 (𝜑 → ((𝑘𝐴𝐵) ∘ 𝐹) = (𝑛𝐶𝐷))
3029oveq2d 7172 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐴𝐵) ∘ 𝐹)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3110, 30eqtrd 2856 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
3231unieqd 4852 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷)))
33 df-esum 31287 . 2 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
34 df-esum 31287 . 2 Σ*𝑛𝐶𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑛𝐶𝐷))
3532, 33, 343eqtr4g 2881 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑛𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wnfc 2961   cuni 4838  cmpt 5146  ccom 5559  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  +∞cpnf 10672  [,]cicc 12742  s cress 16484  *𝑠cxrs 16773  CMndccmn 18906  TopSpctps 21540   tsums ctsu 22734  Σ*cesum 31286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-xadd 12509  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-tset 16584  df-ple 16585  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-ordt 16774  df-xrs 16775  df-ps 17810  df-tsr 17811  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-cntz 18447  df-cmn 18908  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-ntr 21628  df-nei 21706  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tsms 22735  df-esum 31287
This theorem is referenced by:  esumc  31310  esumiun  31353  volmeas  31490
  Copyright terms: Public domain W3C validator