MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fileln0 Structured version   Visualization version   GIF version

Theorem fileln0 22460
Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
fileln0 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)

Proof of Theorem fileln0
StepHypRef Expression
1 id 22 . 2 (𝐴𝐹𝐴𝐹)
2 0nelfil 22459 . 2 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 nelne2 3117 . 2 ((𝐴𝐹 ∧ ¬ ∅ ∈ 𝐹) → 𝐴 ≠ ∅)
41, 2, 3syl2anr 598 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wne 3018  c0 4293  cfv 6357  Filcfil 22455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-fbas 20544  df-fil 22456
This theorem is referenced by:  filinn0  22470  filintn0  22471  alexsublem  22654  cfil3i  23874  iscmet3  23898  filnetlem4  33731
  Copyright terms: Public domain W3C validator