Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneer Structured version   Visualization version   GIF version

Theorem fneer 33701
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneer Er V

Proof of Theorem fneer
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . 2 (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦))
2 fneval.1 . . . . . 6 = (Fne ∩ Fne)
3 inss1 4205 . . . . . 6 (Fne ∩ Fne) ⊆ Fne
42, 3eqsstri 4001 . . . . 5 ⊆ Fne
5 fnerel 33686 . . . . 5 Rel Fne
6 relss 5656 . . . . 5 ( ⊆ Fne → (Rel Fne → Rel ))
74, 5, 6mp2 9 . . . 4 Rel
8 dfrel4v 6047 . . . 4 (Rel = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦})
97, 8mpbi 232 . . 3 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦}
102fneval 33700 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)))
1110el2v 3501 . . . 4 (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))
1211opabbii 5133 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
139, 12eqtri 2844 . 2 = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
141, 13eqer 8324 1 Er V
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  Vcvv 3494  cin 3935  wss 3936   class class class wbr 5066  {copab 5128  ccnv 5554  Rel wrel 5560  cfv 6355   Er wer 8286  topGenctg 16711  Fnecfne 33684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-er 8289  df-topgen 16717  df-fne 33685
This theorem is referenced by:  topfneec  33703  topfneec2  33704
  Copyright terms: Public domain W3C validator