![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneu2 | Structured version Visualization version GIF version |
Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995.) |
Ref | Expression |
---|---|
fneu2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneu 6156 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦 𝐵𝐹𝑦) | |
2 | df-br 4805 | . . 3 ⊢ (𝐵𝐹𝑦 ↔ 〈𝐵, 𝑦〉 ∈ 𝐹) | |
3 | 2 | eubii 2629 | . 2 ⊢ (∃!𝑦 𝐵𝐹𝑦 ↔ ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
4 | 1, 3 | sylib 208 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑦〈𝐵, 𝑦〉 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∃!weu 2607 〈cop 4327 class class class wbr 4804 Fn wfn 6044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-fun 6051 df-fn 6052 |
This theorem is referenced by: feu 6241 |
Copyright terms: Public domain | W3C validator |