MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frinxp Structured version   Visualization version   GIF version

Theorem frinxp 5634
Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
frinxp (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)

Proof of Theorem frinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3961 . . . . . . . . . . 11 (𝑧𝐴 → (𝑥𝑧𝑥𝐴))
2 ssel 3961 . . . . . . . . . . 11 (𝑧𝐴 → (𝑦𝑧𝑦𝐴))
31, 2anim12d 610 . . . . . . . . . 10 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥𝐴𝑦𝐴)))
4 brinxp 5630 . . . . . . . . . . 11 ((𝑦𝐴𝑥𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
54ancoms 461 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
63, 5syl6 35 . . . . . . . . 9 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥)))
76impl 458 . . . . . . . 8 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (𝑦𝑅𝑥𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
87notbid 320 . . . . . . 7 (((𝑧𝐴𝑥𝑧) ∧ 𝑦𝑧) → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
98ralbidva 3196 . . . . . 6 ((𝑧𝐴𝑥𝑧) → (∀𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
109rexbidva 3296 . . . . 5 (𝑧𝐴 → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1110adantr 483 . . . 4 ((𝑧𝐴𝑧 ≠ ∅) → (∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1211pm5.74i 273 . . 3 (((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1312albii 1820 . 2 (∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥) ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
14 df-fr 5514 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦𝑅𝑥))
15 df-fr 5514 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴 ↔ ∀𝑧((𝑧𝐴𝑧 ≠ ∅) → ∃𝑥𝑧𝑦𝑧 ¬ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥))
1613, 14, 153bitr4i 305 1 (𝑅 Fr 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1535  wcel 2114  wne 3016  wral 3138  wrex 3139  cin 3935  wss 3936  c0 4291   class class class wbr 5066   Fr wfr 5511   × cxp 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-fr 5514  df-xp 5561
This theorem is referenced by:  weinxp  5636
  Copyright terms: Public domain W3C validator