Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv5mpt Structured version   Visualization version   GIF version

Theorem funcnv5mpt 29309
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
funcnv5mpt.1 (𝑥 = 𝑧𝐵 = 𝐶)
Assertion
Ref Expression
funcnv5mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑧)   𝐹(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem funcnv5mpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funcnvmpt.0 . . 3 𝑥𝜑
2 funcnvmpt.1 . . 3 𝑥𝐴
3 funcnvmpt.2 . . 3 𝑥𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
61, 2, 3, 4, 5funcnvmpt 29308 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
7 nne 2794 . . . . . . . . 9 𝐵𝐶𝐵 = 𝐶)
8 eqvincg 29160 . . . . . . . . . 10 (𝐵𝑉 → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
95, 8syl 17 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 = 𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
107, 9syl5bb 272 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦 = 𝐶)))
1110imbi1d 331 . . . . . . 7 ((𝜑𝑥𝐴) → ((¬ 𝐵𝐶𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
12 orcom 402 . . . . . . . 8 ((𝑥 = 𝑧𝐵𝐶) ↔ (𝐵𝐶𝑥 = 𝑧))
13 df-or 385 . . . . . . . 8 ((𝐵𝐶𝑥 = 𝑧) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
1412, 13bitri 264 . . . . . . 7 ((𝑥 = 𝑧𝐵𝐶) ↔ (¬ 𝐵𝐶𝑥 = 𝑧))
15 19.23v 1899 . . . . . . 7 (∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ (∃𝑦(𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1611, 14, 153bitr4g 303 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
1716ralbidv 2980 . . . . 5 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
18 ralcom4 3210 . . . . 5 (∀𝑧𝐴𝑦((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
1917, 18syl6bb 276 . . . 4 ((𝜑𝑥𝐴) → (∀𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
201, 19ralbida 2976 . . 3 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧)))
21 nfcv 2761 . . . . . 6 𝑧𝐴
22 nfv 1840 . . . . . 6 𝑥 𝑦 = 𝐶
23 funcnv5mpt.1 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐶)
2423eqeq2d 2631 . . . . . 6 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝐶))
252, 21, 22, 24rmo4f 29183 . . . . 5 (∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2625albii 1744 . . . 4 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
27 ralcom4 3210 . . . 4 (∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧) ↔ ∀𝑦𝑥𝐴𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2826, 27bitr4i 267 . . 3 (∀𝑦∃*𝑥𝐴 𝑦 = 𝐵 ↔ ∀𝑥𝐴𝑦𝑧𝐴 ((𝑦 = 𝐵𝑦 = 𝐶) → 𝑥 = 𝑧))
2920, 28syl6bbr 278 . 2 (𝜑 → (∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶) ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
306, 29bitr4d 271 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478   = wceq 1480  wex 1701  wnf 1705  wcel 1987  wnfc 2748  wne 2790  wral 2907  ∃*wrmo 2910  cmpt 4673  ccnv 5073  Fun wfun 5841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-fv 5855
This theorem is referenced by:  funcnv4mpt  29310
  Copyright terms: Public domain W3C validator