![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hof1 | Structured version Visualization version GIF version |
Description: The object part of the Hom functor maps 𝑋, 𝑌 to the set of morphisms from 𝑋 to 𝑌. (Contributed by Mario Carneiro, 15-Jan-2017.) |
Ref | Expression |
---|---|
hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
hof1 | ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | . . . 4 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | hofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1, 2 | hof1fval 16940 | . . 3 ⊢ (𝜑 → (1st ‘𝑀) = (Homf ‘𝐶)) |
4 | 3 | oveqd 6707 | . 2 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋(Homf ‘𝐶)𝑌)) |
5 | eqid 2651 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
6 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
7 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 5, 6, 7, 8, 9 | homfval 16399 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
11 | 4, 10 | eqtrd 2685 | 1 ⊢ (𝜑 → (𝑋(1st ‘𝑀)𝑌) = (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 Basecbs 15904 Hom chom 15999 Catccat 16372 Homf chomf 16374 HomFchof 16935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-homf 16378 df-hof 16937 |
This theorem is referenced by: yon11 16951 yonedalem21 16960 |
Copyright terms: Public domain | W3C validator |