Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idl0cl Structured version   Visualization version   GIF version

Theorem idl0cl 33416
Description: An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idl0cl.1 𝐺 = (1st𝑅)
idl0cl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
idl0cl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍𝐼)

Proof of Theorem idl0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idl0cl.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2626 . . . 4 (2nd𝑅) = (2nd𝑅)
3 eqid 2626 . . . 4 ran 𝐺 = ran 𝐺
4 idl0cl.2 . . . 4 𝑍 = (GId‘𝐺)
51, 2, 3, 4isidl 33412 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ ran 𝐺𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 501 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ ran 𝐺𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ ran 𝐺((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp2d 1072 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  wss 3560  ran crn 5080  cfv 5850  (class class class)co 6605  1st c1st 7114  2nd c2nd 7115  GIdcgi 27184  RingOpscrngo 33292  Idlcidl 33405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fv 5858  df-ov 6608  df-idl 33408
This theorem is referenced by:  divrngidl  33426  intidl  33427  unichnidl  33429  maxidln0  33443
  Copyright terms: Public domain W3C validator