MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inisegn0 Structured version   Visualization version   GIF version

Theorem inisegn0 5961
Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
inisegn0 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)

Proof of Theorem inisegn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐴 ∈ ran 𝐹𝐴 ∈ V)
2 snprc 4653 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 218 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
43imaeq2d 5929 . . . 4 𝐴 ∈ V → (𝐹 “ {𝐴}) = (𝐹 “ ∅))
5 ima0 5945 . . . 4 (𝐹 “ ∅) = ∅
64, 5syl6eq 2872 . . 3 𝐴 ∈ V → (𝐹 “ {𝐴}) = ∅)
76necon1ai 3043 . 2 ((𝐹 “ {𝐴}) ≠ ∅ → 𝐴 ∈ V)
8 eleq1 2900 . . 3 (𝑎 = 𝐴 → (𝑎 ∈ ran 𝐹𝐴 ∈ ran 𝐹))
9 sneq 4577 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
109imaeq2d 5929 . . . 4 (𝑎 = 𝐴 → (𝐹 “ {𝑎}) = (𝐹 “ {𝐴}))
1110neeq1d 3075 . . 3 (𝑎 = 𝐴 → ((𝐹 “ {𝑎}) ≠ ∅ ↔ (𝐹 “ {𝐴}) ≠ ∅))
12 abn0 4336 . . . 4 ({𝑏𝑏𝐹𝑎} ≠ ∅ ↔ ∃𝑏 𝑏𝐹𝑎)
13 iniseg 5960 . . . . . 6 (𝑎 ∈ V → (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎})
1413elv 3499 . . . . 5 (𝐹 “ {𝑎}) = {𝑏𝑏𝐹𝑎}
1514neeq1i 3080 . . . 4 ((𝐹 “ {𝑎}) ≠ ∅ ↔ {𝑏𝑏𝐹𝑎} ≠ ∅)
16 vex 3497 . . . . 5 𝑎 ∈ V
1716elrn 5822 . . . 4 (𝑎 ∈ ran 𝐹 ↔ ∃𝑏 𝑏𝐹𝑎)
1812, 15, 173bitr4ri 306 . . 3 (𝑎 ∈ ran 𝐹 ↔ (𝐹 “ {𝑎}) ≠ ∅)
198, 11, 18vtoclbg 3569 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅))
201, 7, 19pm5.21nii 382 1 (𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  Vcvv 3494  c0 4291  {csn 4567   class class class wbr 5066  ccnv 5554  ran crn 5556  cima 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568
This theorem is referenced by:  fnpreimac  30416  dnnumch3lem  39666  dnnumch3  39667  wessf1ornlem  41465
  Copyright terms: Public domain W3C validator