Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intop Structured version   Visualization version   GIF version

Theorem intop 44130
Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intop ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)

Proof of Theorem intop
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 44126 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
21elmpocl 7387 . 2 ( ∈ (𝑀 intOp 𝑁) → (𝑀 ∈ V ∧ 𝑁 ∈ V))
3 intopval 44129 . . . 4 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 intOp 𝑁) = (𝑁m (𝑀 × 𝑀)))
43eleq2d 2898 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) ↔ ∈ (𝑁m (𝑀 × 𝑀))))
5 elmapi 8428 . . 3 ( ∈ (𝑁m (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑁)
64, 5syl6bi 255 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁))
72, 6mpcom 38 1 ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  Vcvv 3494   × cxp 5553  wf 6351  (class class class)co 7156  m cmap 8406   intOp cintop 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-intop 44126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator