Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo1 Structured version   Visualization version   GIF version

Theorem isdrngo1 35236
Description: The predicate "is a division ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1 𝐺 = (1st𝑅)
isdivrng1.2 𝐻 = (2nd𝑅)
isdivrng1.3 𝑍 = (GId‘𝐺)
isdivrng1.4 𝑋 = ran 𝐺
Assertion
Ref Expression
isdrngo1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem isdrngo1
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-drngo 35229 . . . 4 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
21relopabi 5696 . . 3 Rel DivRingOps
3 1st2nd 7740 . . 3 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 688 . 2 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 relrngo 35176 . . . 4 Rel RingOps
6 1st2nd 7740 . . . 4 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
75, 6mpan 688 . . 3 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
87adantr 483 . 2 ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
9 isdivrng1.1 . . . . 5 𝐺 = (1st𝑅)
10 isdivrng1.2 . . . . 5 𝐻 = (2nd𝑅)
119, 10opeq12i 4810 . . . 4 𝐺, 𝐻⟩ = ⟨(1st𝑅), (2nd𝑅)⟩
1211eqeq2i 2836 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ ↔ 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
1310fvexi 6686 . . . . . 6 𝐻 ∈ V
14 isdivrngo 35230 . . . . . 6 (𝐻 ∈ V → (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)))
1513, 14ax-mp 5 . . . . 5 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
16 isdivrng1.4 . . . . . . . . . 10 𝑋 = ran 𝐺
17 isdivrng1.3 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
1817sneqi 4580 . . . . . . . . . 10 {𝑍} = {(GId‘𝐺)}
1916, 18difeq12i 4099 . . . . . . . . 9 (𝑋 ∖ {𝑍}) = (ran 𝐺 ∖ {(GId‘𝐺)})
2019, 19xpeq12i 5585 . . . . . . . 8 ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))
2120reseq2i 5852 . . . . . . 7 (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)})))
2221eleq1i 2905 . . . . . 6 ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp)
2322anbi2i 624 . . . . 5 ((⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((ran 𝐺 ∖ {(GId‘𝐺)}) × (ran 𝐺 ∖ {(GId‘𝐺)}))) ∈ GrpOp))
2415, 23bitr4i 280 . . . 4 (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
25 eleq1 2902 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ ⟨𝐺, 𝐻⟩ ∈ DivRingOps))
26 eleq1 2902 . . . . . 6 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ RingOps ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps))
2726anbi1d 631 . . . . 5 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2825, 27bibi12d 348 . . . 4 (𝑅 = ⟨𝐺, 𝐻⟩ → ((𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) ↔ (⟨𝐺, 𝐻⟩ ∈ DivRingOps ↔ (⟨𝐺, 𝐻⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))))
2924, 28mpbiri 260 . . 3 (𝑅 = ⟨𝐺, 𝐻⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3012, 29sylbir 237 . 2 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
314, 8, 30pm5.21nii 382 1 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  {csn 4569  cop 4575   × cxp 5555  ran crn 5558  cres 5559  Rel wrel 5562  cfv 6357  1st c1st 7689  2nd c2nd 7690  GrpOpcgr 28268  GIdcgi 28269  RingOpscrngo 35174  DivRingOpscdrng 35228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-1st 7691  df-2nd 7692  df-rngo 35175  df-drngo 35229
This theorem is referenced by:  divrngcl  35237  isdrngo2  35238  divrngpr  35333
  Copyright terms: Public domain W3C validator