Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr Structured version   Visualization version   GIF version

Theorem lfuhgr 32364
Description: A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr
StepHypRef Expression
1 edgval 26834 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 lfuhgr.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
32rneqi 5807 . . . . 5 ran 𝐼 = ran (iEdg‘𝐺)
41, 3eqtr4i 2847 . . . 4 (Edg‘𝐺) = ran 𝐼
54sseq1i 3995 . . 3 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
62uhgrfun 26851 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
7 fdmrn 6538 . . . . . 6 (Fun 𝐼𝐼:dom 𝐼⟶ran 𝐼)
8 fss 6527 . . . . . . 7 ((𝐼:dom 𝐼⟶ran 𝐼 ∧ ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
98ex 415 . . . . . 6 (𝐼:dom 𝐼⟶ran 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
107, 9sylbi 219 . . . . 5 (Fun 𝐼 → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
116, 10syl 17 . . . 4 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
12 frn 6520 . . . 4 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
1311, 12impbid1 227 . . 3 (𝐺 ∈ UHGraph → (ran 𝐼 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
145, 13syl5bb 285 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
15 uhgredgss 26916 . . . . 5 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
1615difss2d 4111 . . . 4 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 (Vtx‘𝐺))
17 lfuhgr.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1817pweqi 4557 . . . 4 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
1916, 18sseqtrrdi 4018 . . 3 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ 𝒫 𝑉)
20 ssrab 4049 . . . 4 ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((Edg‘𝐺) ⊆ 𝒫 𝑉 ∧ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2120baib 538 . . 3 ((Edg‘𝐺) ⊆ 𝒫 𝑉 → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2219, 21syl 17 . 2 (𝐺 ∈ UHGraph → ((Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
2314, 22bitr3d 283 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wral 3138  {crab 3142  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  dom cdm 5555  ran crn 5556  Fun wfun 6349  wf 6351  cfv 6355  cle 10676  2c2 11693  chash 13691  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UHGraphcuhgr 26841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-edg 26833  df-uhgr 26843
This theorem is referenced by:  lfuhgr2  32365
  Copyright terms: Public domain W3C validator