MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmrcl Structured version   Visualization version   GIF version

Theorem lmrcl 20975
Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
lmrcl (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)

Proof of Theorem lmrcl
Dummy variables 𝑗 𝑓 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lm 20973 . . 3 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
21dmmptss 5600 . 2 dom ⇝𝑡 ⊆ Top
3 df-br 4624 . . 3 (𝐹(⇝𝑡𝐽)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽))
4 elfvdm 6187 . . 3 (⟨𝐹, 𝑃⟩ ∈ (⇝𝑡𝐽) → 𝐽 ∈ dom ⇝𝑡)
53, 4sylbi 207 . 2 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ dom ⇝𝑡)
62, 5sseldi 3586 1 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036  wcel 1987  wral 2908  wrex 2909  cop 4161   cuni 4409   class class class wbr 4623  {copab 4682  dom cdm 5084  ran crn 5085  cres 5086  wf 5853  cfv 5857  (class class class)co 6615  pm cpm 7818  cc 9894  cuz 11647  Topctop 20638  𝑡clm 20970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-xp 5090  df-rel 5091  df-cnv 5092  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fv 5865  df-lm 20973
This theorem is referenced by:  lmcvg  21006
  Copyright terms: Public domain W3C validator