 Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidlval Structured version   Visualization version   GIF version

Theorem maxidlval 33456
 Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
maxidlval.1 𝐺 = (1st𝑅)
maxidlval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
maxidlval (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐺(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem maxidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6150 . . 3 (𝑟 = 𝑅 → (Idl‘𝑟) = (Idl‘𝑅))
2 fveq2 6150 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
3 maxidlval.1 . . . . . . . 8 𝐺 = (1st𝑅)
42, 3syl6eqr 2678 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
54rneqd 5317 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
6 maxidlval.2 . . . . . 6 𝑋 = ran 𝐺
75, 6syl6eqr 2678 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
87neeq2d 2856 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ ran (1st𝑟) ↔ 𝑖𝑋))
97eqeq2d 2636 . . . . . . 7 (𝑟 = 𝑅 → (𝑗 = ran (1st𝑟) ↔ 𝑗 = 𝑋))
109orbi2d 737 . . . . . 6 (𝑟 = 𝑅 → ((𝑗 = 𝑖𝑗 = ran (1st𝑟)) ↔ (𝑗 = 𝑖𝑗 = 𝑋)))
1110imbi2d 330 . . . . 5 (𝑟 = 𝑅 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ (𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
121, 11raleqbidv 3146 . . . 4 (𝑟 = 𝑅 → (∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))) ↔ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋))))
138, 12anbi12d 746 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟)))) ↔ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))))
141, 13rabeqbidv 3186 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))} = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
15 df-maxidl 33429 . 2 MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))})
16 fvex 6160 . . 3 (Idl‘𝑅) ∈ V
1716rabex 4778 . 2 {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))} ∈ V
1814, 15, 17fvmpt 6240 1 (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝑋)))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1992   ≠ wne 2796  ∀wral 2912  {crab 2916   ⊆ wss 3560  ran crn 5080  ‘cfv 5850  1st c1st 7114  RingOpscrngo 33311  Idlcidl 33424  MaxIdlcmaxidl 33426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fv 5858  df-maxidl 33429 This theorem is referenced by:  ismaxidl  33457
 Copyright terms: Public domain W3C validator