MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomptx Structured version   Visualization version   GIF version

Theorem mpomptx 7262
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpompt.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpomptx (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpomptx
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5144 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
2 df-mpo 7158 . . 3 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
3 eliunxp 5705 . . . . . . 7 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
43anbi1i 625 . . . . . 6 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
5 19.41vv 1950 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
6 anass 471 . . . . . . . 8 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
7 mpompt.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
87eqeq2d 2831 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑤 = 𝐶𝑤 = 𝐷))
98anbi2d 630 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
109pm5.32i 577 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
116, 10bitri 277 . . . . . . 7 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
12112exbii 1848 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
134, 5, 123bitr2i 301 . . . . 5 ((𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1413opabbii 5130 . . . 4 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
15 dfoprab2 7209 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
1614, 15eqtr4i 2846 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
172, 16eqtr4i 2846 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)}
181, 17eqtr4i 2846 1 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  {csn 4564  cop 4570   ciun 4916  {copab 5125  cmpt 5143   × cxp 5550  {coprab 7154  cmpo 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-iun 4918  df-opab 5126  df-mpt 5144  df-xp 5558  df-rel 5559  df-oprab 7157  df-mpo 7158
This theorem is referenced by:  mpompt  7263  mpomptsx  7759  dmmpossx  7761  fmpox  7762  gsumcom2  19091
  Copyright terms: Public domain W3C validator