MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxneldm Structured version   Visualization version   GIF version

Theorem mpoxneldm 7878
Description: If the first argument of an operation given by a maps-to rule is not an element of the first component of the domain or the second argument is not an element of the second component of the domain depending on the first argument, then the value of the operation is the empty set. (Contributed by AV, 25-Oct-2020.)
Hypothesis
Ref Expression
mpoxeldm.f 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
mpoxneldm ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐷(𝑥)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem mpoxneldm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3124 . . . 4 (𝑋𝐶 ↔ ¬ 𝑋𝐶)
2 df-nel 3124 . . . 4 (𝑌𝑋 / 𝑥𝐷 ↔ ¬ 𝑌𝑋 / 𝑥𝐷)
31, 2orbi12i 911 . . 3 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
4 ianor 978 . . 3 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ (¬ 𝑋𝐶 ∨ ¬ 𝑌𝑋 / 𝑥𝐷))
53, 4bitr4i 280 . 2 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) ↔ ¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
6 neq0 4309 . . . 4 (¬ (𝑋𝐹𝑌) = ∅ ↔ ∃𝑛 𝑛 ∈ (𝑋𝐹𝑌))
7 mpoxeldm.f . . . . . 6 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
87mpoxeldm 7877 . . . . 5 (𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
98exlimiv 1931 . . . 4 (∃𝑛 𝑛 ∈ (𝑋𝐹𝑌) → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
106, 9sylbi 219 . . 3 (¬ (𝑋𝐹𝑌) = ∅ → (𝑋𝐶𝑌𝑋 / 𝑥𝐷))
1110con1i 149 . 2 (¬ (𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
125, 11sylbi 219 1 ((𝑋𝐶𝑌𝑋 / 𝑥𝐷) → (𝑋𝐹𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wnel 3123  csb 3883  c0 4291  (class class class)co 7156  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690
This theorem is referenced by:  nbgrnvtx0  27121
  Copyright terms: Public domain W3C validator