![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nleltd | Structured version Visualization version GIF version |
Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nleltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
nleltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
nleltd.3 | ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
nleltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nleltd.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) | |
2 | nleltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | nleltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | ltnled 10368 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 1, 4 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2131 class class class wbr 4796 ℝcr 10119 < clt 10258 ≤ cle 10259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-xp 5264 df-cnv 5266 df-xr 10262 df-le 10264 |
This theorem is referenced by: limsup10exlem 40499 |
Copyright terms: Public domain | W3C validator |