| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| omon | ⊢ (ω ∈ On ∨ ω = On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7852 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7758 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (ω ∈ On ∨ ω = On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 Ord word 6331 Oncon0 6332 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-om 7843 |
| This theorem is referenced by: omelon2 7855 infensuc 9119 elhf2 36163 |
| Copyright terms: Public domain | W3C validator |