MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Structured version   Visualization version   GIF version

Theorem onin 5716
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onin
StepHypRef Expression
1 eloni 5695 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 5695 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordin 5715 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
41, 2, 3syl2an 494 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴𝐵))
5 simpl 473 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 inex1g 4766 . . 3 (𝐴 ∈ On → (𝐴𝐵) ∈ V)
7 elong 5693 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
85, 6, 73syl 18 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
94, 8mpbird 247 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1992  Vcvv 3191  cin 3559  Ord word 5684  Oncon0 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-v 3193  df-in 3567  df-ss 3574  df-uni 4408  df-tr 4718  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-ord 5688  df-on 5689
This theorem is referenced by:  tfrlem5  7422  noreson  31506  ontopbas  32061
  Copyright terms: Public domain W3C validator