Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opab0 Structured version   Visualization version   GIF version

Theorem opab0 5157
 Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.)
Assertion
Ref Expression
opab0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)

Proof of Theorem opab0
StepHypRef Expression
1 opabn0 5156 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
2 df-ne 2933 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅)
3 2exnaln 1905 . . 3 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
41, 2, 33bitr3i 290 . 2 (¬ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
54con4bii 310 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅ ↔ ∀𝑥𝑦 ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196  ∀wal 1630   = wceq 1632  ∃wex 1853   ≠ wne 2932  ∅c0 4058  {copab 4864 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865 This theorem is referenced by:  fvmptopab  6863  epinid0  8672  cnvepnep  8678  opabf  34471  sprsymrelfvlem  42268
 Copyright terms: Public domain W3C validator