![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn0 | Structured version Visualization version GIF version |
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
opabn0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4070 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
2 | elopab 5129 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
3 | 2 | exbii 1919 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
4 | exrot3 2190 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | opex 5077 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
6 | 5 | isseti 3345 | . . . . . 6 ⊢ ∃𝑧 𝑧 = 〈𝑥, 𝑦〉 |
7 | 19.41v 2022 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑧 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 991 | . . . . 5 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1920 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 264 | . . 3 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 3, 10 | bitri 264 | . 2 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
12 | 1, 11 | bitri 264 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1628 ∃wex 1849 ∈ wcel 2135 ≠ wne 2928 ∅c0 4054 〈cop 4323 {copab 4860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-opab 4861 |
This theorem is referenced by: opab0 5153 csbopab 5154 dvdsrval 18841 thlle 20239 bcthlem5 23321 lgsquadlem3 25302 br1cosscnvxrn 34543 |
Copyright terms: Public domain | W3C validator |