Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabbrfex0d Structured version   Visualization version   GIF version

Theorem opabbrfex0d 43505
Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresex0d.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresex0d.t ((𝜑𝑥𝑅𝑦) → 𝜃)
opabresex0d.y ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
opabresex0d.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabbrfex0d (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Distinct variable groups:   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabbrfex0d
StepHypRef Expression
1 pm4.24 566 . . 3 (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
21opabbii 5133 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)}
3 opabresex0d.x . . 3 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
4 opabresex0d.t . . 3 ((𝜑𝑥𝑅𝑦) → 𝜃)
5 opabresex0d.y . . 3 ((𝜑𝑥𝐶) → {𝑦𝜃} ∈ 𝑉)
6 opabresex0d.c . . 3 (𝜑𝐶𝑊)
73, 4, 5, 6opabresex0d 43504 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)} ∈ V)
82, 7eqeltrid 2917 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  {cab 2799  Vcvv 3494   class class class wbr 5066  {copab 5128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator