Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid Structured version   Visualization version   GIF version

Theorem opabid 4952
 Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
opabid (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)

Proof of Theorem opabid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 4903 . 2 𝑥, 𝑦⟩ ∈ V
2 copsexg 4926 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
32bicomd 213 . 2 (𝑧 = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑))
4 df-opab 4684 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 3, 4elab2 3342 1 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ⟨cop 4161  {copab 4682 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-opab 4684 This theorem is referenced by:  opelopabsb  4955  ssopab2b  4972  dmopab  5305  rnopab  5340  funopab  5891  opabiota  6228  fvopab5  6275  f1ompt  6348  ovid  6742  zfrep6  7096  enssdom  7940  omxpenlem  8021  infxpenlem  8796  canthwelem  9432  pospo  16913  2ndcdisj  21199  lgsquadlem1  25039  lgsquadlem2  25040  h2hlm  27725  opabdm  29307  opabrn  29308  fpwrelmap  29392  eulerpartlemgvv  30261  phpreu  33064  poimirlem26  33106  diclspsn  36002  areaquad  37322  sprsymrelf  41063
 Copyright terms: Public domain W3C validator