Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oposlem Structured version   Visualization version   GIF version

Theorem oposlem 34295
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
oposlem.b 𝐵 = (Base‘𝐾)
oposlem.l = (le‘𝐾)
oposlem.o = (oc‘𝐾)
oposlem.j = (join‘𝐾)
oposlem.m = (meet‘𝐾)
oposlem.f 0 = (0.‘𝐾)
oposlem.u 1 = (1.‘𝐾)
Assertion
Ref Expression
oposlem ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))

Proof of Theorem oposlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oposlem.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2621 . . . . 5 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2621 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
4 oposlem.l . . . . 5 = (le‘𝐾)
5 oposlem.o . . . . 5 = (oc‘𝐾)
6 oposlem.j . . . . 5 = (join‘𝐾)
7 oposlem.m . . . . 5 = (meet‘𝐾)
8 oposlem.f . . . . 5 0 = (0.‘𝐾)
9 oposlem.u . . . . 5 1 = (1.‘𝐾)
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 34293 . . . 4 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom (lub‘𝐾) ∧ 𝐵 ∈ dom (glb‘𝐾)) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
1110simprbi 480 . . 3 (𝐾 ∈ OP → ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
12 fveq2 6189 . . . . . . 7 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1312eleq1d 2685 . . . . . 6 (𝑥 = 𝑋 → (( 𝑥) ∈ 𝐵 ↔ ( 𝑋) ∈ 𝐵))
1412fveq2d 6193 . . . . . . 7 (𝑥 = 𝑋 → ( ‘( 𝑥)) = ( ‘( 𝑋)))
15 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
1614, 15eqeq12d 2636 . . . . . 6 (𝑥 = 𝑋 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑋)) = 𝑋))
17 breq1 4654 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
1812breq2d 4663 . . . . . . 7 (𝑥 = 𝑋 → (( 𝑦) ( 𝑥) ↔ ( 𝑦) ( 𝑋)))
1917, 18imbi12d 334 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦 → ( 𝑦) ( 𝑥)) ↔ (𝑋 𝑦 → ( 𝑦) ( 𝑋))))
2013, 16, 193anbi123d 1398 . . . . 5 (𝑥 = 𝑋 → ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋)))))
2115, 12oveq12d 6665 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2221eqeq1d 2623 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 1 ↔ (𝑋 ( 𝑋)) = 1 ))
2315, 12oveq12d 6665 . . . . . 6 (𝑥 = 𝑋 → (𝑥 ( 𝑥)) = (𝑋 ( 𝑋)))
2423eqeq1d 2623 . . . . 5 (𝑥 = 𝑋 → ((𝑥 ( 𝑥)) = 0 ↔ (𝑋 ( 𝑋)) = 0 ))
2520, 22, 243anbi123d 1398 . . . 4 (𝑥 = 𝑋 → (((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
26 breq2 4655 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
27 fveq2 6189 . . . . . . . 8 (𝑦 = 𝑌 → ( 𝑦) = ( 𝑌))
2827breq1d 4661 . . . . . . 7 (𝑦 = 𝑌 → (( 𝑦) ( 𝑋) ↔ ( 𝑌) ( 𝑋)))
2926, 28imbi12d 334 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦 → ( 𝑦) ( 𝑋)) ↔ (𝑋 𝑌 → ( 𝑌) ( 𝑋))))
30293anbi3d 1404 . . . . 5 (𝑦 = 𝑌 → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ↔ (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋)))))
31303anbi1d 1402 . . . 4 (𝑦 = 𝑌 → (((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑦 → ( 𝑦) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ) ↔ ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3225, 31rspc2v 3320 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 )))
3311, 32mpan9 486 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵)) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
34333impb 1259 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋 𝑌 → ( 𝑌) ( 𝑋))) ∧ (𝑋 ( 𝑋)) = 1 ∧ (𝑋 ( 𝑋)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911   class class class wbr 4651  dom cdm 5112  cfv 5886  (class class class)co 6647  Basecbs 15851  lecple 15942  occoc 15943  Posetcpo 16934  lubclub 16936  glbcglb 16937  joincjn 16938  meetcmee 16939  0.cp0 17031  1.cp1 17032  OPcops 34285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-nul 4787
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-dm 5122  df-iota 5849  df-fv 5894  df-ov 6650  df-oposet 34289
This theorem is referenced by:  opoccl  34307  opococ  34308  oplecon3  34312  opexmid  34320  opnoncon  34321
  Copyright terms: Public domain W3C validator