MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtval Structured version   Visualization version   GIF version

Theorem ordtval 21797
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
ordtval (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem ordtval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝑅𝑉𝑅 ∈ V)
2 dmeq 5772 . . . . . . . 8 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 ordtval.1 . . . . . . . 8 𝑋 = dom 𝑅
42, 3syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → dom 𝑟 = 𝑋)
54sneqd 4579 . . . . . 6 (𝑟 = 𝑅 → {dom 𝑟} = {𝑋})
6 rnun 6004 . . . . . . 7 ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))
7 breq 5068 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑦𝑟𝑥𝑦𝑅𝑥))
87notbid 320 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑦𝑟𝑥 ↔ ¬ 𝑦𝑅𝑥))
94, 8rabeqbidv 3485 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥} = {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
104, 9mpteq12dv 5151 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
1110rneqd 5808 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}))
12 ordtval.2 . . . . . . . . 9 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
1311, 12syl6eqr 2874 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) = 𝐴)
14 breq 5068 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
1514notbid 320 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑥𝑟𝑦 ↔ ¬ 𝑥𝑅𝑦))
164, 15rabeqbidv 3485 . . . . . . . . . . 11 (𝑟 = 𝑅 → {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦} = {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
174, 16mpteq12dv 5151 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
1817rneqd 5808 . . . . . . . . 9 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}))
19 ordtval.3 . . . . . . . . 9 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
2018, 19syl6eqr 2874 . . . . . . . 8 (𝑟 = 𝑅 → ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}) = 𝐵)
2113, 20uneq12d 4140 . . . . . . 7 (𝑟 = 𝑅 → (ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ ran (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
226, 21syl5eq 2868 . . . . . 6 (𝑟 = 𝑅 → ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})) = (𝐴𝐵))
235, 22uneq12d 4140 . . . . 5 (𝑟 = 𝑅 → ({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))) = ({𝑋} ∪ (𝐴𝐵)))
2423fveq2d 6674 . . . 4 (𝑟 = 𝑅 → (fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))) = (fi‘({𝑋} ∪ (𝐴𝐵))))
2524fveq2d 6674 . . 3 (𝑟 = 𝑅 → (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
26 df-ordt 16774 . . 3 ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))))
27 fvex 6683 . . 3 (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))) ∈ V
2825, 26, 27fvmpt 6768 . 2 (𝑅 ∈ V → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
291, 28syl 17 1 (𝑅𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cun 3934  {csn 4567   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cfv 6355  ficfi 8874  topGenctg 16711  ordTopcordt 16772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fv 6363  df-ordt 16774
This theorem is referenced by:  ordttopon  21801  ordtopn1  21802  ordtopn2  21803  ordtcnv  21809  ordtrest  21810  ordtrest2  21812  leordtval2  21820  ordthmeolem  22409  ordtprsval  31161  ordtrestNEW  31164
  Copyright terms: Public domain W3C validator