Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtrestNEW Structured version   Visualization version   GIF version

Theorem ordtrestNEW 31164
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
ordtrestNEW ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))

Proof of Theorem ordtrestNEW
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2 fvex 6683 . . . . . 6 (le‘𝐾) ∈ V
32inex1 5221 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
41, 3eqeltri 2909 . . . 4 ∈ V
54inex1 5221 . . 3 ( ∩ (𝐴 × 𝐴)) ∈ V
6 eqid 2821 . . . 4 dom ( ∩ (𝐴 × 𝐴)) = dom ( ∩ (𝐴 × 𝐴))
7 eqid 2821 . . . 4 ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
8 eqid 2821 . . . 4 ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
96, 7, 8ordtval 21797 . . 3 (( ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘( ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))))
105, 9mp1i 13 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) = (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))))
11 ordttop 21808 . . . . . 6 ( ∈ V → (ordTop‘ ) ∈ Top)
124, 11ax-mp 5 . . . . 5 (ordTop‘ ) ∈ Top
13 ordtNEW.b . . . . . . 7 𝐵 = (Base‘𝐾)
14 fvex 6683 . . . . . . 7 (Base‘𝐾) ∈ V
1513, 14eqeltri 2909 . . . . . 6 𝐵 ∈ V
1615ssex 5225 . . . . 5 (𝐴𝐵𝐴 ∈ V)
17 resttop 21768 . . . . 5 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V) → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
1812, 16, 17sylancr 589 . . . 4 (𝐴𝐵 → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
1918adantl 484 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((ordTop‘ ) ↾t 𝐴) ∈ Top)
2013ressprs 30642 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Proset )
21 eqid 2821 . . . . . . . . . 10 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
22 eqid 2821 . . . . . . . . . 10 ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2321, 22prsdm 31157 . . . . . . . . 9 ((𝐾s 𝐴) ∈ Proset → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
2420, 23syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
25 eqid 2821 . . . . . . . . . . . . . 14 (𝐾s 𝐴) = (𝐾s 𝐴)
2625, 13ressbas2 16555 . . . . . . . . . . . . 13 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
27 fvex 6683 . . . . . . . . . . . . 13 (Base‘(𝐾s 𝐴)) ∈ V
2826, 27eqeltrdi 2921 . . . . . . . . . . . 12 (𝐴𝐵𝐴 ∈ V)
29 eqid 2821 . . . . . . . . . . . . 13 (le‘𝐾) = (le‘𝐾)
3025, 29ressle 16672 . . . . . . . . . . . 12 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3128, 30syl 17 . . . . . . . . . . 11 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3231adantl 484 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
3326adantl 484 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
3433sqxpeqd 5587 . . . . . . . . . 10 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
3532, 34ineq12d 4190 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
3635dmeqd 5774 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
3724, 36, 333eqtr4d 2866 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴)
3813, 1prsss 31159 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
3938dmeqd 5774 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴)))
4013, 1prsdm 31157 . . . . . . . . . 10 (𝐾 ∈ Proset → dom = 𝐵)
4140sseq2d 3999 . . . . . . . . 9 (𝐾 ∈ Proset → (𝐴 ⊆ dom 𝐴𝐵))
4241biimpar 480 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 ⊆ dom )
43 sseqin2 4192 . . . . . . . 8 (𝐴 ⊆ dom ↔ (dom 𝐴) = 𝐴)
4442, 43sylib 220 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (dom 𝐴) = 𝐴)
4537, 39, 443eqtr4d 2866 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴))
464, 11mp1i 13 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘ ) ∈ Top)
4716adantl 484 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐴 ∈ V)
48 eqid 2821 . . . . . . . . . 10 dom = dom
4948ordttopon 21801 . . . . . . . . 9 ( ∈ V → (ordTop‘ ) ∈ (TopOn‘dom ))
504, 49mp1i 13 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘ ) ∈ (TopOn‘dom ))
51 toponmax 21534 . . . . . . . 8 ((ordTop‘ ) ∈ (TopOn‘dom ) → dom ∈ (ordTop‘ ))
5250, 51syl 17 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ∈ (ordTop‘ ))
53 elrestr 16702 . . . . . . 7 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ dom ∈ (ordTop‘ )) → (dom 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
5446, 47, 52, 53syl3anc 1367 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (dom 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
5545, 54eqeltrd 2913 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) ∈ ((ordTop‘ ) ↾t 𝐴))
5655snssd 4742 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {dom ( ∩ (𝐴 × 𝐴))} ⊆ ((ordTop‘ ) ↾t 𝐴))
57 rabeq 3483 . . . . . . . . 9 (dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
5845, 57syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
5945, 58mpteq12dv 5151 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}))
6059rneqd 5808 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) = ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}))
61 inrab2 4276 . . . . . . . . . 10 ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦 𝑥}
62 inss2 4206 . . . . . . . . . . . . . 14 (dom 𝐴) ⊆ 𝐴
63 simpr 487 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑦 ∈ (dom 𝐴))
6462, 63sseldi 3965 . . . . . . . . . . . . 13 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑦𝐴)
65 simpr 487 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝑥 ∈ (dom 𝐴))
6662, 65sseldi 3965 . . . . . . . . . . . . . 14 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝑥𝐴)
6766adantr 483 . . . . . . . . . . . . 13 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → 𝑥𝐴)
68 brinxp 5630 . . . . . . . . . . . . 13 ((𝑦𝐴𝑥𝐴) → (𝑦 𝑥𝑦( ∩ (𝐴 × 𝐴))𝑥))
6964, 67, 68syl2anc 586 . . . . . . . . . . . 12 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (𝑦 𝑥𝑦( ∩ (𝐴 × 𝐴))𝑥))
7069notbid 320 . . . . . . . . . . 11 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (¬ 𝑦 𝑥 ↔ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥))
7170rabbidva 3478 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦 𝑥} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
7261, 71syl5eq 2868 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥})
734, 11mp1i 13 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → (ordTop‘ ) ∈ Top)
7447adantr 483 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → 𝐴 ∈ V)
75 simpl 485 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → 𝐾 ∈ Proset )
76 inss1 4205 . . . . . . . . . . . 12 (dom 𝐴) ⊆ dom
7776sseli 3963 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐴) → 𝑥 ∈ dom )
7848ordtopn1 21802 . . . . . . . . . . . . 13 (( ∈ V ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
794, 78mpan 688 . . . . . . . . . . . 12 (𝑥 ∈ dom → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
8079adantl 484 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
8175, 77, 80syl2an 597 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ ))
82 elrestr 16702 . . . . . . . . . 10 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∈ (ordTop‘ )) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
8373, 74, 81, 82syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
8472, 83eqeltrrd 2914 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥} ∈ ((ordTop‘ ) ↾t 𝐴))
8584fmpttd 6879 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}):(dom 𝐴)⟶((ordTop‘ ) ↾t 𝐴))
8685frnd 6521 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ) ↾t 𝐴))
8760, 86eqsstrd 4005 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ⊆ ((ordTop‘ ) ↾t 𝐴))
88 rabeq 3483 . . . . . . . . 9 (dom ( ∩ (𝐴 × 𝐴)) = (dom 𝐴) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
8945, 88syl 17 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9045, 89mpteq12dv 5151 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))
9190rneqd 5808 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) = ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))
92 inrab2 4276 . . . . . . . . . 10 ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥 𝑦}
93 brinxp 5630 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴) → (𝑥 𝑦𝑥( ∩ (𝐴 × 𝐴))𝑦))
9467, 64, 93syl2anc 586 . . . . . . . . . . . 12 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (𝑥 𝑦𝑥( ∩ (𝐴 × 𝐴))𝑦))
9594notbid 320 . . . . . . . . . . 11 ((((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) ∧ 𝑦 ∈ (dom 𝐴)) → (¬ 𝑥 𝑦 ↔ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦))
9695rabbidva 3478 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥 𝑦} = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9792, 96syl5eq 2868 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) = {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})
9848ordtopn2 21803 . . . . . . . . . . . . 13 (( ∈ V ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
994, 98mpan 688 . . . . . . . . . . . 12 (𝑥 ∈ dom → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
10099adantl 484 . . . . . . . . . . 11 ((𝐾 ∈ Proset ∧ 𝑥 ∈ dom ) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
10175, 77, 100syl2an 597 . . . . . . . . . 10 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ ))
102 elrestr 16702 . . . . . . . . . 10 (((ordTop‘ ) ∈ Top ∧ 𝐴 ∈ V ∧ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∈ (ordTop‘ )) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
10373, 74, 101, 102syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → ({𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} ∩ 𝐴) ∈ ((ordTop‘ ) ↾t 𝐴))
10497, 103eqeltrrd 2914 . . . . . . . 8 (((𝐾 ∈ Proset ∧ 𝐴𝐵) ∧ 𝑥 ∈ (dom 𝐴)) → {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦} ∈ ((ordTop‘ ) ↾t 𝐴))
105104fmpttd 6879 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}):(dom 𝐴)⟶((ordTop‘ ) ↾t 𝐴))
106105frnd 6521 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ (dom 𝐴) ↦ {𝑦 ∈ (dom 𝐴) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ) ↾t 𝐴))
10791, 106eqsstrd 4005 . . . . 5 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}) ⊆ ((ordTop‘ ) ↾t 𝐴))
10887, 107unssd 4162 . . . 4 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦})) ⊆ ((ordTop‘ ) ↾t 𝐴))
10956, 108unssd 4162 . . 3 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → ({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ) ↾t 𝐴))
110 tgfiss 21599 . . 3 ((((ordTop‘ ) ↾t 𝐴) ∈ Top ∧ ({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))) ⊆ ((ordTop‘ ) ↾t 𝐴)) → (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ) ↾t 𝐴))
11119, 109, 110syl2anc 586 . 2 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (topGen‘(fi‘({dom ( ∩ (𝐴 × 𝐴))} ∪ (ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑦( ∩ (𝐴 × 𝐴))𝑥}) ∪ ran (𝑥 ∈ dom ( ∩ (𝐴 × 𝐴)) ↦ {𝑦 ∈ dom ( ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑥( ∩ (𝐴 × 𝐴))𝑦}))))) ⊆ ((ordTop‘ ) ↾t 𝐴))
11210, 111eqsstrd 4005 1 ((𝐾 ∈ Proset ∧ 𝐴𝐵) → (ordTop‘( ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cun 3934  cin 3935  wss 3936  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  ficfi 8874  Basecbs 16483  s cress 16484  lecple 16572  t crest 16694  topGenctg 16711  ordTopcordt 16772   Proset cproset 17536  Topctop 21501  TopOnctopon 21518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-ple 16585  df-rest 16696  df-topgen 16717  df-ordt 16774  df-proset 17538  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  ordtrest2NEW  31166
  Copyright terms: Public domain W3C validator